
 

 1 

RTL may replace oscilloscope 

An experimental study of the RLC resonance 

Giacomo Torzo 

Summer school AIF, Genova, July 27-31, 2007 

 

1. Introduction 

 

The resonant systems are an important part in physics teaching but rarely they are 

studied experimentally. In particular, the resonant RLC circuits are usually taught only 

theoretically because in the traditional laboratory one should use an expensive storage 

oscilloscope and complex data analysis in order to perform a  complete quantitative 

study of the resonance. 

On the other hand if one uses a real time data acquisition system (RTL), made of an 

interface with two or more analog inputs and of a Personal Computer, the experiment 

becomes much easier cheaper and faster, and moreover the experimental data may be 

stored for further analysis out of the laboratory (e.g. as home work). 

One must only correctly choose the frequency range to be explored (i.e.  the product  

LC) that should not be too high nor too small (a reasonable value for the resonant 

frequency is 1 kHz) 

Here we describe the experiment performed using a widespread commercial RTL 

system (LabPro/ LoggerPro from Vernier) and a signal generator that provides an 

analog output signal Vf  proportional to the frequency of the signal Vo. 

We use a half-wave rectifier/filter ( inside the dotted box in the example shown in 

figure 1) to measure the amplitude Va of the signal across R or L or C. 

 

 

Figure 1: Circuit set up to measure the resonance across the resistance R  

 

The circuit equation is 
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where Vo is the amplitude and  is the angular frequency of the driving signal 

provided by the generator. 

By substituting I = - dq/dt we obtain the differential equation for the charge q(t): 
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whose stationary solution must be a signal with the same frequency as the driving 

signal. 

The LabPro interface measures the values of Va (voltage proportional to the amplitude 

of the oscillating voltage across the resistor) and Vf (voltage proportional to the 

frequency) while we  sweep the frequency of the driving signal by acting on a 

potentiometer on the signal generator. 

The measurement may be repeated after having placed the rectifying filter in parallel 

to the inductor L, or to the capacitor C. 

Using the values R=1 K, C=100 nF and L=300 mH, with a driving amplitude 

Vo=4.3V we obtained the graphs shows in figure 2, where the x-xis is still in voltage 

units. 

 

  

Figure 2: Voltage Va  measured across R, L and C, as a function of voltage Vf (frequency)  

 

To calibrate the x-axis in frequency units, we may follow different procedures.  If an 

oscilloscope or a  frequency-meter is available we may follow the usual method of 
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two points calibration, by typing in the two values of frequency measured 

independently.  

On the other hand we may record the signal Vo (driving voltage) for two values of Vf 

(the voltage proportional to the frequency): then, using the cursor to read the period or 

the FFT utility in LoggerPro, we calculate the two frequency values corresponding to 

the two Vf values, and calculate the values (A=intercept B=slope) for the calibrating 

relation f=A+B* Vf 

The graph of the voltage across R starts from zero at low frequency , and returns to 

zero at high frequency, passing through a peak value. 

The graph of the voltage across C starts from the Vo values, increases to a peak value 

Vp >Vo and decreases to zero at high frequency.  

The graph of the voltage across L starts from zero at low frequency,  increases to a 

peak value Vp >Vo returning to Vo at high frequency. 

We may note that the three peaks do not occur at the same frequency. 

To understand these features of the RLC resonance we may exploit the graphing 

facilities of LoggerPro to build a model to be compared with the experimental results.. 

 

2. Model for the RLC resonance.  

 

The Ohm’s Law for circuits including inductors and capacitors must be written as 

V() = Z()I(), 

where Z() is the impedance of each element (ZR = R, ZC = 1/jC, ZL = jL)  

and  = f  is the angular frequency1.  

The e.m.f. of the signal generator V(t,) is the sum of the voltage across the elements 

in series: 

  

V ( t,ω ) = ( R + jωL+
1

jωC
)I( t,ω ) = Z( ω )I( t,ω )  

 

 
1  For the inductor we must take into account the resistive component due to the dissipation on the iron 

core: in our inductor we found a resistive value at 1 kHz of about 100 ohm. 
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Writing the voltage signal as V(t,)=Voexp(jt) and the current signal as 

I(t,)=Ioexp(j(t + ), the total impedance Z()=V(t,)/I(t,)=R+jL+1/(jC) may 

also be written Z = Zoexp(-j), and the signal across each element is obtained as 

partition ratio 

|VR/Vo| = |R/Z|;  |VL/Vo| = |ZL/Z|  e |VC/Vo| = |ZC/Z| 

where |A(j)| is the module of the complex number A(j) 

Calculating the modules of ZL ZC and Zo we get:  

|ZL| = L,   |ZC| = 1/C,  |Z| = |R+jL(1-1/LC)| = (R+L(−o
/))  

where we see that   ω 0
= 1 / ( LC )  is the value that gives the minimum for Z()  

(Z(o)=R) .  

Using these relations we may write the amplitudes of the voltages across R, C and L 

as: 

  

V
R

= V
0

R

R2 + ( ωLω1 / ωC )2              
  

V
C

= V
0

1 / ωC

R2 + ( ωLω1 / ωC )2  

  

V
L

= V
0

ωL

R2 + ( ωLω1 / ωC )2  

 

3. Comparing the model with experimental data 

 

The three functions  VR
,V

L
,V

C  may be displayed (by defining them in the Menu Data 

/ newColumn) in an overlapping graph: we will see that indeed they do not peak at the 

same frequency.  

To understand how the peaks separation depends on the circuit parameters we must 

calculate the time derivatives of the three functions and find the zeros.  

To simplify the notation we may let )/(10 LC=ω  and 

ω  

ω= R /2L , so that we get  

ω  

VR /V0 =1/ 1+ (ω /2γ)
2
1− (ω 0 /ω)

2
[ ]

2

 and immediately we see that he maximum for 

VR/Vo is for  = o. 

For VC we find the maximum at )1()2( 2
0

2
0

2/122
0 ωωωωωωωω=ω   
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and for  VL the maximum is at )1()2( 2
0

2
0

2/122
0

2
0 ωω+ωωωωωω=ω   

The peak separation is therefore 
ΔωLC= 2γ

2/ω0 : the greater is the damping  the 

larger is the peak separation. 

 

3. Measuring more resonance curves at the same time  

 

Using two differential voltage probes and one voltage probe, we may collect  three 

resonance curves in a single run. We must also use three rectifying filters as well (see 

figure 3). 

Using LabPro we must know that the fouth analog channel does accept only voltages 

in the range 0+5V (not compatible with the frequency output Vf of our signal 

generator) Therefore our setup was (with reference to figure 3) Vf
ω CH1, 

|VC| ω CH2, |VL| ω CH3, |VR| ω  CH4, using a probe ±10V in must be measured by 

diferential voltage probes while |VC| may be measured using a standard ±10V probe.  

 

 

Figura 3: Circuit to measure simultaneously three resonance curves . 

 

By repeating the measurements with a larger value of the resistor (R = 1000  ), we 

find that the peak separation is larger (see figure 4). 
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Figure 4: Resonance curves across R (closed circles) L (triangles) and C (open circles) 

 

The peak separation between VL e VC predicted by the model with =1666 and 

o=5773 rad/s, is 0
22 ωω=ωω LC = 961 rad/s, and the experimental value is 

ωω =954 rad/s. 

 

4. The quality factor of the resonance 

 

Our model predicts (at the resonant frequency) a decreasing value of the total 

impedance with R so that for R=0 the amplitude should diverge.  

The width of the resonance peak (defined as the difference 2-1 between the 

frequencies at which the amplitude reduces to 1/ 2  with respect to the peak value) is 

obtained by solving the following equation: 

2

1

0

==
Z

R

V

V R

 

The two solutions are: 

ω+ω+ω=++=ω 2
0

2

2

2

2
2

1

4 L

R

LCL

R
   

ω  

ω1 =
R2

4L
2 +

1

LC
−
R

2L
= γ

2
+ω 0

2
− γ  

We may easily see that 1*2 =(o)2 i.e. 1:o = o:1;  therefore 1 and 2 are not 

equally separated from o, and the resonance curve is not symmetric.  



 

 7 

The width is 
QL

R 0

12 2
ω

=ω==ωωω=ωω  where 

ω  

Q =
ω 0

Δω
=
ω 0

2γ
=
1

R

L

C  is named 

quality factor (Q-value) of the resonance. 

While comparing the curves obtained with different values of the resistance R (e.g.  

R1 = 1000  R2 = 560  , R3 = 100 ) we must adjust the amplitude of the driving 

voltage: the smaller is R the higher are the peaks, and remember that the differential 

voltage probes have a range of about ±5V. 

We may also note that the quality factor depends also on L and C: at constant R it 

increases with L and decreases with C. 

ω  

Q =
ω 0

Δω
=
ω 0

2γ
=
1

R

L

C  

We may change C and L to test this relation. 

 


