
The Maxwell wheel is a
device traditionally used in
the introductory physics lab

to investigate the moment of inertia
of a disc. The apparatus consists of a
disc of radius R having an axis of
radius r (with r << R) suspended
from a fixed frame by two strings of
equal length, which are wound
around the axis (see Fig. 1).l There
are several obvious features of the
motion of the Maxwell wheel. First
we see that the velocity and therefore
the acceleration of the “fall” are
smaller than those of a free falling
body. Second, we see that the disc
rotates. More precisely, to fall it must
rotate, and when it reaches the end of
the string, it must climb up in order to
maintain its angular momentum.
Finally, we notice that in its lowest
position the disc stretches the strings.

This paper illustrates the didactic
advantages of a kinematic and
dynamic study of the Maxwell wheel
motion with modern sensors in a
microcomputer-based lab.  

Experimental Setup
By interfacing a Maxwell wheel to

a Personal Computer (PC) through a
position sensor (sonar) and a force
sensor (Fig. 2), the system evolution
in time may be observed and record-
ed both kinematically (from position
measurements velocity and accelera-
tion are calculated) and dynamically
(the force transducer measures the
wire tension).

We use two types of low-cost
interfaces specially suitable for
didactic applications (ULI II2 and
PASCO3 500), both bundled with
software designed for easy data
acquisition and handling. The inter-
face communicates with the PC
through the slow RS232 serial port
(COM in Windows and AppleTalk in
Macintosh), but an internal buffer
memory allows the collection of data
at a high rate.

Our Maxwell wheel (shown in
Fig. 3) is made from a thin metal disc
of radius R with a central hole hosting
an axis that has three sections with

different diameters (4.0, 6.3, and 8.0
mm) to give three values for the ratio
R/r. At both ends of each section thin
transverse holes (l mm) are drilled
for attaching the strings.

Example of Motion Acquisition
Using a brass wheel of radius R =

47.5 mm, thickness 3 mm, and mass
m = 227 g, with axis radius r = 2 mm,
we obtained the plots shown4 in Fig.
4. Note how the position-versus-time
plot (A) resembles that of a bouncing
ball. The velocity plot (B) shows dis-
continuities corresponding to the
“bounces,” where the velocity sud-
denly changes sign. Plot (C) shows
that the acceleration is negative and
small during climb and fall, with pos-
itive peaks at the bottom positions.
The force plot (D) shows that the
string tension has corresponding
peaks.

Physical Descriptions
The simplest model is based on

energy considerations. If we let the
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wheel fall from a height h, and the
potential energy U(x) is referred to
the equilibrium position (U = 0 at
x = 0), the system total energy E at
the start (x = h, v = 0) is E = mgh.
During the fall the potential energy
transforms into translational kinetic
energy Et = ½mv2 and rotational
kinetic energy Er = ½I�2. Assuming
negligible dissipation, we may write
therefore: E = U(x) + Et(x) + Er(x), or
mgh = mgx + ½mv2 + ½I�2, where m
is the Maxwell wheel mass, I the
moment of inertia, and � the angular
velocity. This energy balance
explains why the linear acceleration
is less than g. To experimentally test
the model, we should write the accel-
eration as a function of directly mea-
surable quantities. To do this we
exploit the fact that the translational
and rotational motions are not 
independent.  

Using an upward vertical axis with
the origin in the equilibrium position,
the rotation angle �(t) is related to the
displacement x(t) by: x(t) = r �(t)
(where r is the axis radius), while the
angular velocity is related to the lin-
ear velocity by:

v(t) = r�(t) (1)

We may therefore write all the
quantities as functions of position x
and of velocity v so that the energy
balance becomes:

showing that the acceleration of the
center of mass is5

a = g/k = g/(1 + I/mr2) (2)

For r < < R, the moment of inertia,
I, of the wheel is a good approxima-
tion to that of the disc (I � mR2/2),
and therefore the predicted accelera-
tion is

a � g/�1+R2/2r2� � g�2r2/R2�  (3)

Checking Predictions 
The moment of inertia of a homo-

geneous cylinder of density �, radius
R, and length s is I = �R4s�/2. For our
Maxwell wheel, made of four cylin-
ders, we get:  
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With R = 47.5 mm, s = 3.0 mm, r1 =
4.0 mm, r2 = 3.2 mm, r3 = 2.0 mm,
and l = 20 mm, the term within curl
brackets is negligible (1.9 x 10-3), and
we may therefore approximate I with
the moment of inertia of the disc
only: I � mR2/2, letting k �(R/r)2/2.

With the values chosen in the setup
of Fig. 4, the predicted values were k
� 283 and a = 0.035 m/s2. The exper-
imental value a = 0.044 m/s2,

mg(h – x) = �
1
2

�mv2 + �
1
2

�I�2 =
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I
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2
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showing that the system behaves like
a point with inertial mass mk = m(l +
I/mr2). Solving with respect to the
velocity, we get a relation similar to
that for the velocity of a free body
falling from height h:

v(x) = �	 = �2	�
g

k
�	 (	h	 –	 x	)	

= 
2�a�(h� –� x�)�

2g(h – x)
��
1 + I/(mr2)
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obtained by fitting linearly the veloc-
ity data (see Fig. 5), has the predicted
order of magnitude, but is in excess
by more than 20%. Therefore we
must conclude that in our model we
neglected some important feature of
the studied phenomenon. Observe
that we assumed a zero thickness of
the string, which in our case is

duces a correction of 18% (much
greater than that due to the moment
of inertia of the wheel axis � 0.2%).
This tells us that details that at first
sight seem negligible may turn out to
be quite important.

“Static” and “Dynamic” Disc
Weight

The force sensor records the sum
of the vertical components of the wire
tensions, revealing, for example, a
change when, having immobilized
the disc with an extra string, we cut it
and let the wheel fall. In our model
the tension measured with the steady
disc must equal the weight �o = mg,
and with the falling disc it must be 
�1 = mg – ma. With an aluminum disc
of 80 g, the static tension is �o =
0.786 N and the predicted difference is 
�� = �o–�1 = ma = (0.08 kg) x (0.1
ms–2) � 0.008 N, the value for a being
obtained from the experimental data
(see Fig. 6C). Here we recommend the
use of a larger axis radius (r = 3.2
mm) to make the acceleration larger
in order to make the variation
detectable.

Recording the force before and
after cutting the string,6 we get ten-
sion values �o = 0.786 N and �1 =
0.778 N (see Fig. 6B) whose differ-
ence is consistent with the expected
value.

“Collision” at the End of the
String

When the Maxwell wheel reaches
the end of the string, it has a momen-
tum mv directed downward. This
downward motion is stopped and
reversed by the string stretching,
which mimics a collision against an
“invisible wall.” The collision at the
end of the string takes place within a
short time (� t � 0.16 s). During this
time the translational kinetic energy
is first converted into elastic energy,
stored within the stretched string (and
the strained force sensor), and then
given back again as translational
kinetic energy now associated with
an upward motion.

Newton’s second law relates the
momentum change to the impulsive

(0.40 � 0.05) mm. The effective
value of the axis radius must be
increased by about half of the string
thickness (0.2 mm). This lowers the k
value to 232 � 10, and the predicted
value of the acceleration becomes a =
0.042 � 0.002 ms2, agreeing very
well with the experimental result.

The finite string thickness intro-

Fig. 6.

Fig. 7.
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force fi(t): in differential form fi = ma
= m(dv/dt), in integral form m�v =
�fi (t)dt. The impulsive force here is
the change � – �o of the string’s ten-
sion, measured by the force sensor.

Figure 7 shows, on an expanded
timescale, the same data as in Fig. 5
in order to compare the momentum
change, �(mv), with the integral of
the pulse, fidt. The integral, computed
by the dedicated software as the area
under the curve � (x) – �	, gives the
value 0.044 Ns, very close to the
value of the product m(v2–v1) =
(0.227 kg) x (0.2 m/s2) = 0.045 Ns.

Energy vs Time
The total energy of the wheel dur-

ing the upward and downward
motion may be calculated from the
measured values of position x and
velocity v of the center of mass:

E(x,v) = mgx + �
1
2

�mv2 + �
1
2

�I�2

= mgx + �
1
2

�m�1+ �
m

I

r2��v2

= mg(x+ v2/2a) (4)

where we use relation (2) to express
I/mr2 in terms of g and a (calculated
from experimental data as in Fig.
8A). The calculated values of the
total energy, plotted versus time in
Fig. 8B, show that the sum of the
potential and kinetic energy during
each cycle of the downward and
upward motion is almost constant, as
expected. In this plot energy seems to
disappear during the collisions. This
is due to two different limitations in
the way total energy has been com-
puted. The first is that relation (4) is
based on relation (1), which is not
valid when x reaches values close to
zero; i.e., during the collision at the
string’s end. In fact, during the
string’s stretching the linear velocity
changes sign (passing through zero)
while the angular velocity remains
approximately constant. The second
limitation is that relation (4) does not
take into account the elastic energy of
the stretched string.

Keeping the two limitations in
mind, we find (Fig. 8B) that during
upward and downward motion the

To compare the model predictions
with the experimental results, we
should know r, m, and I. But for a yo-
yo it is difficult to evaluate the
moment of inertia, since its shape is
not a geometrically simple one.
However, it may be fruitful to use the
plots in order to try a qualitative
check of our model. During the
upward and downward motion we
expect a negative (downward as g)
acceleration, constant and less than g.

The behavior of the position ver-
sus time is qualitatively the expected
one: the plot seems to be made of
parabolic branches (Fig. 9A). But on
looking at the velocity, we see that it
does not have the predicted constant
slope during the upward and down-
ward motion (Fig. 9B) This is appar-
ent also in the acceleration-versus-

total energy decrease can be fitted
exponentially (with a time constant
of about 55 s). Since the decrease
appears to occur uniformly during the
whole motion it seems mainly due to
viscous friction.

Suggestions for Teaching
A more familiar version of the

Maxwell wheel is the traditional toy
yo-yo. The experimental setup
already described can be used for the
experimental investigation of the
behavior of a yo-yo, which may
prove a good start for the study of
translational and rotational motions.
A record of the experimental data we
obtained with a commercial yo-yo (a
plastic toy with mass m = 18 g and
axis radius r = 3.5 mm) is shown in
Fig. 9.
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time plot that shows modulations
even far from the instants when the
yo-yo bounces back (Fig. 9C). We
also notice that the absolute value of
the acceleration is minimum when
the string is almost completely
wound off.

How do we explain this modula-
tion? A possible explanation is that
the effective radius of the axis
changes because the string winds
over itself and this acts like an axis
with increasing diameter. In other
words when the string is almost all
wound up on the axis (velocity � 0,
and the yo-yo in the topmost posi-
tion), the effective radius of the axis
is larger than the r value that our
model assumes. The Maxwell wheel
can therefore be introduced as a
refined version of the toy, intentional-
ly designed in order to avoid the dif-
ficulties met in the yo-yo investiga-
tion. It may also be stimulating for
the students to realize that, as hinted
before, the graphs of the kinematic
description of the motion of the
wheel closely resemble those of the
motion of a bouncing ball.

In Fig. 10 we report experimental
data collected with a position sensor
located above a Ping-Pong ball
bouncing on the floor (the ball posi-
tion is nevertheless recorded as dis-
tance from the floor, in order to allow
easier comparison with the previous
graphs).

ratus in order to reach a satisfactory
agreement with experimental data.
Furthermore, the opportunity offered
by the system to easily compare
descriptions of different phenomena
and to detect common and uncom-
mon features may help students to
better appreciate the potentialities of
the kinematic description of motion.

References and Notes
1. With the two strings attached to

a single point, they will spirally
wind around the axis, thereby
avoiding changes in the effec-
tive radius r.

2. Produced by Vernier Software,
Portland OR, www.vernier.com.

3 Produced by PASCO scientific,
Roseville, CA, www.pasco.com.

4. The noise on acceleration data
is due to the effect of the double
derivative of position data. 

5. We may reach the same result
by equating the torque T,
applied by the external force, to
the derivative of the angular
momentum dL/dt. If we calcu-
late the momenta with respect
to the axis of symmetry of the
wheel, the driving torque is T =
r�, where � is the sum of the
vertical components of the
string tensions (the gravitation-
al force mg, applied to the cen-
ter of mass, has zero momen-
tum). The angular momentum
is L = I�, and therefore r� =
Id�/dt = I(a/r), which gives the
tension � = aI/r2. Using New-
ton’s second law for the net
force mg–� applied to the
wheel, we get the equation ma
= mg–� = mg– aI/r2. Solving
with respect to a we obtain: a =
g[m/ (I/r2 + m)] = g/k.

6. The glitch in the plot � (t) at the
beginning of the fall is due to
the scissors cutting the string. 

The motion is weakly damped by
viscous forces: the acceleration dif-
fers only by 1% from g (a � 9.7
m/s2). We may also calculate here the
total energy, (Etot) as the sum of the
potential energy (U = mgx) and the
kinetic energy (Ec = mv2/2) (the ball
mass is m = 2g). We see that the ener-
gy is nearly constant during the
upward-downward motion; the ener-
gy loss takes place essentially during
the collision, where the kinetic ener-
gy is converted into elastic energy
(peaks toward E = 0). This elastic
energy is partially given back as
kinetic energy after the collision, and
partially dissipated as sound
(mechanical energy leaving the ball)
and heat (increasing the temperature
of the ball and the ground).

Comments
We suggest that by interfacing the

Maxwell wheel with a PC we can
transform a lab experience into a
fruitful opportunity not only to
strengthen students’ knowledge of
mechanics but also to emphasize the
role of the models in constructing
physics knowledge. The data acquisi-
tion system can be a powerful cogni-
tive tool. It allows a real-time visual-
ization of the relevant variables
selected by students according to any
particular model they wish to test,
and encourages them to play the
game of gradually refining the appa-

Fig. 10.
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