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Abstract 
The Wilberforce pendulum is a didactical device often used in class demonstrations to show the amazing phenomenon 

of coupled oscillations (rotational and longitudinal) producing beats in a special mass-spring set up. The phenomenon 

is particularly surprising for a distant observer, who easily detects the longitudinal motion, but may skip the presence of 

rotation. To him (her) the vertical oscillation appears to damp out completely and then it rises again without external 

action (as if an invisible force would come in). In this paper we propose a revised version of the classical experiment, 

suggesting a deeper understanding of phenomena through real time data acquisition of both the rotation and the vertical 

oscillation, using a MEMS accelerometer/gyroscope and the free software Phyphox to show the device motion on a 

smartphone screen. A detailed analysis of the motion and of the energetical aspects are then performed using the free 

modeling tool InsightMaker. 
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I. INTRODUCTION  
 

The Wilberforce pendulum [1] picked up the curiosity of 

many authors [2,3,4,5,6], among which Arnold Sommerfeld, 

who wrote a complete theoretical treatment [7,8,9]. Recently 

it was studied also using either real-time data acquisition 

systems (sonar interfaced to a PC by measuring only the 

vertical oscillation) [10], video camera and complex 

software/hardware [11], or accelerometer/gyroscope [12] 

(but using expensive dataloggers and software), or using 

accelerometer/gyroscope integrated in smartphones 

(however missing a complete record of rotational and 

longitudinal motions) [13,14,15].  

Commercial Wilberforce pendulums are also available, 

with indirect measurements of the z vertical displacement 

and the  rotation angle, using torque/force sensor, which 

require expensive dataloggers and software [16]. 

Here we report experimental results obtained with a 

wireless device that characterizes the Wilberforce pendulum 

motion both for vertical and rotational oscillations, requiring 

nor datalogger, nor software, but simply a common 

smartphone or tablet. 

 

 

 

II. THE EXPERIMENTAL SETUP 
 

The Wilberforce pendulum dynamic includes three 

different kinds of motion: two roto-translational oscillations 

and a mixed oscillation with beatings, in which the energy of 

the system is transferred between the vertical and rotational 

oscillations. This peculiar behavior is obtained if: 

• rigid connections are provided at both ends of the 

helicoidal right-hand spring,  

•  the ratio k/ between the longitudinal elastic constant k 

and the torsional elastic constant  does closely match the 

ratio m/I between the mass m and the inertial moment I.  

Our pendulum (figure 1) uses a 50 turns stainless steel 

spring (25 mm coil diameter, 1.3 mm wire diameter) and a 

brass cylindrical bob of about 0.5 kg (with 4 screws for fine-

tuning of the inertial moment), and at the bottom a MEMS 

absolute orientation sensor (including accelerometer and 

gyroscope) driven by an ESP32 microcontroller with built-in 

WIFI and Bluetooth and Li-ion battery charger 

The top end of the spring is fixed to a brass cylinder that 

may both rotate along the vertical axis and shift in vertical 

direction (figure 2). 

By a proper choice of initial displacement z0 and rotation 

angle 0 we may excite each one of the three different 

pendulum motions we are interested in. 
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FIGURE 1. The Wilberforce pendulum. 

 

The mechanical device shown in figure 2 works as 

follows: a small manual clockwise rotation of the horizontal 

bar gives to the upper end of the spring both an upward shift 

and a clockwise rotation (due to the inclines of the hollow 

cylinder top). Note that that an action applied to the upper 

end of the spring corresponds to an opposite action applied to 

the bob: in this case a bob displacement z0<0 and a bob 

rotation 0 (normal mode 1, with z0 and 0 in phase, see 

section V). A rotation of the bar in the opposite direction 

excites the normal mode 2 (with z0 and 0 in phase 

opposition). 

.  
FIGURE 2. Roto-translational suspension device. 

 

The boards with the MEMS sensor, the microprocessor 

and the battery are inserted into a 3D-printed enclosure that 

is screwed at the brass cylinder bottom. 

Using Arduino programmer, we uploaded to the ESP32 

code for Bluetooth connection to the Phyphox application, 

and for a simple data conversion of the MEMS sensor output 

signals (vertical acceleration az and rotation angle ). 

Knowing the values of the elastic constant k and of the 

oscillating mass m, using the Newton law (Fz=maz), the 

Hooke law (Fz=-kz-) (modified by the elastic coupling 

term as explained in SECTION IV), from the measured 

acceleration values a we calculate the displacement values z 

through the equation: 

z = - (m/k)a+(/k)/2 (1) 

III.  EXPERIMENTAL RESULTS  
 

An example of the recorded rotation angle and of the 

vertical displacement is shown in figure 3, where the beats 

are evident: the vertical oscillation slowly dumps-out while 

rotational oscillation rises, then the process reverses 

(approximately every 1/2 minute) with the energy associated 

to each oscillation that transfers from one motion to the other, 

with small dissipation.  
 

  
FIGURE 3. Example of data recorded for mixed motion. Top 

graph: rotation angle . Middle graph: vertical displacement z. 

Bottom graph: angle  vs. displacement z. 
 

In figure 3 the longitudinal and torsional oscillations 

excited by starting the motion with initial displacement z=25 

mm and =0 have the same period. This condition is needed 

to achieve a complete energy exchange. The period matching 

may be obtained by adjusting the moment of inertia of the 

oscillating bob through the 4 screw knobs protruding from 

the brass cylinder. 

 

IV.  ENERGY ANALYSIS  

 
In order to study the time evolution of the energy of our 

system (both vertical and rotational oscillation) we need to 

consider a kinetic term Ek and an elastic potential term Ee 

[17]. For the Translational motion we have:  

ET = EkT + EeT= mv2/2+kz2/2  (2) 
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where m is the mass of the oscillating bob, v its velocity, k 

the elastic constant of the spring, and z its vertical 

displacement from the equilibrium position. For the 

Rotational motion we have:  

ER = EkR + EeR= I2/2+  2/2  (3) 

where I is the moment of inertia of the bob,  = d/dt its 

angular velocity,  the torsional constant of the spring and  

the rotation angle.  

We note that in order to obtain a complete expression of the 

total energy of the system, it is not necessary to describe the 

damping explicitly (since the dynamic values update their 

respective energy contributions at each instant). However, in 

addition to the four contributions above, it is necessary to 

introduce a term describing the interaction between 

translation and rotational motion. Following the model 

proposed by Sommerfeld [7], we introduce the coupling 

energy E = z, where  is the coupling coefficient which 

characterizes the spring and depends on its geometric 

properties as well as on the mechanical properties of the 

material of which the spring is made. The complete equation 

for the Wilberforce pendulum energy is therefore: 

   EWilber =ET+ER+E =(mv2+kz2+I++z)/2 (4) 

In order to evaluate the behavior of the various terms one 

must know the values of the four parameters m, k, I and .  

To determine k we may measure the spring elongation under 

a known force (e.g. the cylinder weight mg).  

A measurement of the moment of inertia I for our non-

cylindrical bob (consisting of the brass cylinder, its 

protruding screws, and the box containing the electronics 

attached at the bottom) may be obtained through two 

measurements of the rotational period: first with the bob only, 

and then by adding an annular cylinder (of known mass M, 

inner radius R1, outer radius R2), whose moment of inertia is 

Ia=M(R2
2

+R1
2

)/2.  

The two periods (without and with the annular cylinder) obey 

to the relations: (T/2)
2

=Ix/    (T1/2)
2 

= (Ix+Ia)/, giving:  

Ix= IaT
2

/(T1
2

-T
2

). 

We can finally determine the torsion constant  from the 

measured period T=2/ :  = I(2/T)
2

. 

 

V.  NORMAL MODES  

 

To find out the frequencies of the normal modes of the 

Wilberforce pendulum, we begin by analyzing the vertical 

displacement z(t) in the case where there are beats that totally 

transfer energy from translational to rotational motion 

(Figure 3). The initial conditions for achieving this situation 

are met by displacing the pendulum bob vertically by z(0)= 

z0, with no rotation (a(0)=0) and releasing it from rest (v(0)=0 

and (0)=0).  

Under these circumstances the Fast Fourier Transform (FFT) 

of the data illustrated in Figure 3 for the vertical z 

displacement shows two distinct peaks (of the same height) 

at frequencies 1.26 Hz and 1.29 Hz (figure 4). This is due to 

the intrinsic coupling between two normal modes.  

 
FIGURE 4. FFT of the data illustrated in Figure 3 for the vertical 

displacement z. 

These latter can be excited by properly choosing the 

initial conditions, as explained in section II. The records of 

rotations and translations for the two normal modes, are 

illustrated in figure 5. 

 

  

   
FIGURE 5. Example of data recorded for the two normal modes 

and corresponding FFT graphs. 

The analysis of the motion equations giving the frequencies 

of the two normal modes  and  may be found in several 

papers [2 - 9]. Here we limit ourselves to the case where the 

pendulum is fine-tuned, a situation achieved when the 

vertical and rotational motions show the same frequency, i.e., 

when z = (k/m) =  = ( /I)  = . In this case the beat 

frequency B (related to the rapidity of energy transfer) is 

largely smaller than the mechanical oscillation frequency. 

This allows us to use the linearized relations [3], which are 

valid precisely in the case of weak coupling, easier to handle: 

=  +  (kI)    

   =  −(kI)    () 
It can be demonstrated [3] that the normal modes (no 

beatings) can be excited by choosing initial conditions: z0 = 

+ for the normal mode 1 and z0 = − for the normal 
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mode 2, where = (I/m) is the radius of gyration of the 

pendulum. Then, keeping in mind the relationship expressing 

the interaction energy (E=z), we can say that normal 

mode 1 is the one characterized by higher energy and in-

phase changes of displacement and angle (with our right-

hand helical spring z and  have same sign), while normal 

mode 2 the one characterized by lower energy and a phase-

opposition of displacement and angle (z and  have opposite 

sign). 

The difference  −  is the beating frequency :  

 =  (kI)  ()  

The value of the coupling constant  determines the beating 

period T = 2/. The stronger is the coupling the faster 

becomes the energy transfer across modes, the shorter 

becomes the beating period.  

A value for  can therefore be obtained from experimental 

data, measuring the frequencies  and 2: in fact, from 

equations (5) and (6) we get  = 2(1−2)(kI). 

 

VI.  ANALYSIS WITH EXCEL  

 

As first step we study the experimental results by using real 

data uploaded into an Excel® spreadsheet (data export 

through WIFI connection is included in Phyphox 

application). Using standard Excel tools we calculate the 

various energy terms. 

Once we have determined the four parameters m, k, I and 

 we calculate the elastic and kinetic energies from the 

measured angles and displacements, as shown in figure 6. 

 

 
 

FIGURE 6. Elastic (Ee) and kinetic (Ek) energies for rotational and 

translational motions vs. time. 

 

Figure 6 shows the periodic transformation of the elastic 

energy into kinetic energy, both for translation and rotation. 

The sum of kinetic energy and elastic energy for each motion, 

illustrated in figure 7, ET=EeT+EkT and ER= EeR+EkR, shows 

the transfer of energy from oscillation and rotation with much 

small frequency B. 
 

 
FIGURE 7. Translational ET and rotational ER energies vs. time. 

By finally adding the three terms ET(t), ER(t) and E(t) we 

obtain the total energy that appears to decrease very slowly 

in time (in figure 8 we see that the time constant in the fitting 

exponential decay is about 185 s). The oscillations that affect 

the calculated values in this graph may be attributed to 

“noise” in the recorded data and to the incertitude in the 

parameters m, k, I,  and .  

 

 
FIGURE 8. Calculated ET(t) + ER(t)+ E(t)   as function of time. 

 

The use of Excel to obtain figures 6, 7 and 8 requires a long 

data handling: e.g. for translations: a recursive formula must 

be used to calculate in the first data raw for each time interval 

dt, the variation in speed dv/dt (from the initial acceleration  

–(kz0+0)/m, then the variation of z (from dz/dt), and finally 

the acceleration calculated for the new z is placed in the next 

raw (end of the cycle). Then, by click-dragging in each 

column, the data are calculated for the whole set. The same 

procedure must be carried-out for rotations.  

Then one must enter into the first data raw the appropriate 

formulas, for each energy term through the equations (2), (3), 

(4), and propagate the calculation for the entire columns, and 

finally one may use the calculated values to build the various 

graphs. 

A much easier and faster method may be the dynamical 

modeling], as shown later.  

 

VII.  DYNAMICAL MODELING 

 

In the previous section we used Excel to obtain a first 

look at the energy analysis (figures 6, 7, 8) but this quite 

tedious process does not provide results entirely satisfactory. 

Some simulations of Wilberforce pendulum may be found on 

the web, however they do not offer the possibility to compare 

the results with experimental data nor do they usually present 
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an analysis of the energy aspects. [19,20,21]. Better suited for 

this purpose are today's readily available tools of dynamical 

modeling, which allow models to be built selecting and 

combining a few basic structural elements. Among the 

various possibilities, below we present results obtained with 

the free-software InsightMaker [22], which only requires an 

internet connection. 

In InsightMaker we create the model using: a) "reservoirs" 

which represents physical quantities (extensive quantities 

that we can imagine to be "stored" in the system, as 

momentum p=mv, angular momentum L=I; in figure 9 they 

are shown as rectangles; b) "flow rates", shown as thick 

segments with double-arrows, which implement, at each 

instant, the correct value of the incoming and/or outgoing 

exchanges of the reservoir to which they are connected; c) 

"constants or variables", shown as circles, which represent 

general physical quantities; d) "links", shown as lines with 

single-arrow (the arrow direction indicates which primitive 

affects the other primitive). A fifth primitive, named 

“converter”, represented by a hexagon, allows a comparison 

between model results and experimental data imported as a 

CSV file.  

 

  

 
FIGURE 9. Dynamical model obtained with InsightMaker. The attached experimental data for translations may be seen by clicking on the 

primitive "z measured". The button "SIMULATE" starts the process and displays the graphs. 

 

Our model was built as follows: 

- for translational motion we define a reservoir for linear 

momentum p, connected to three different flowrates: one 

describing the exchanges due to the restoring elastic force 

Felastic = –kz, one describing the exchanges due to the 

dissipative force (we choose a linear regime Ffrict =–bv since 

the dissipation is due essentially to air friction), and finally 

one accounting for the coupling force Fcoupling =– /2; 

- for rotational motion we define a reservoir for angular 

momentum L, with three flowrates one describing the 

restoring elastic torque elastic = –, one describing the 

dissipative torque (for linear regime frict = – ), and one 

accounting for the coupling torque coupling = –  z/2; 

- then we define a set of variables with constant values, 

representing all the parameters that characterize the 

pendulum (the coefficients b and  must be properly chosen 

to fit the experimental damping); 

- then we define the two variables for the linear velocity 

v=p/m and the angular velocity =L/I; these, interpreted as 

a rate of change, yield the values of vertical displacement 

z(t) and angular displacement (t) which are represented as 

reservoirs (values obtained by integration). 

In order to determine the motion of the pendulum, it is also 

necessary to specify the initial conditions: for example we 

may choose to release the pendulum from rest, displacing it 

vertically (i.e. z(0)=z0), but without any rotation (i.e (0)=0). 

At this stage, the model is complete as far as we are 

interested in the kinematics and dynamics of the pendulum 

motion. Before proceeding to the comparison between the 
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experimental data and the model results, we briefly discuss 

how the energy aspects are implemented. They are collected 

in the right part of the model (Figure 9):  

- the four terms (kinetic and elastic energy for translations and 

rotations) are defined as variables, since all the quantities 

necessary to obtain them are already present in the model: 

for translation ET=EkT+EeT=(mv2+kz2)/2, for rotations: 

ER=EkR+EeR =(I+) and for the coupling energy: 

Ecoupling=z/2. Finally we define the variable EWilber = 

ET+ER+Ecoupling  that gives the total energy associated with 

the pendulum; 
- a different approach is needed for the dissipated energy, 

since it can only be expressed as integration of the dissipated 

power. In the model this translates to the use of a flowrate-

reservoir pair for each motion: the flowrates define the 

instantaneous dissipation rates (PdissR = frict , and PdissT=  

v Ffrict ) while the reservoirs (EdissR , and EdissT ) give the value 

of dissipated energy; 
- finally we use again a variable to define the total energy of 

the system E = EWilber+ Ediss R + EdissT : its time evolution will 

tell us whether or not our model conforms to the principle of 

conservation of energy. 
Once the model is built, one needs only to set the simulation 

time step (e.g. 0.01 s), the algorithm type (we choose 4th order 

Runge-Kutta) and the simulation length.  

 
FIGURE 10. Comparison between experimental data (orange for 

displacement and violet for angle) and model results (blue). 

 

First, we are interested in the comparison between model 

results and experimental data obtained for both vertical and 

torsional displacements: the overall trend (see figure 9, about 

200 s) allows us to adjust the dissipation factors b and . 

Figure 10 shows the detail of the first 10 seconds (where the 

blue line represents experimental data). The result can be rated 

as more than satisfactory. 

In figure 11 we show the results for the evolution of the kinetic 

and elastic terms of translational motion, and in figure 12 the 

same for rotational motion. 

 

 
FIGURE 11. Energy evolution for the translational motion for 10 s. 

 

 
FIGURE 12. Energy evolution for the torsional motion for 10 s. 

 

The time evolution of the various terms for much longer time 

is shown in figure 13: in particular we observe that the 

quantity E shows a constant value. This indicates that our 

model respects the energy principle. 

 

 
FIGURE 13. Energy graphs obtained with our model. 

A close look at the graphs (figure 14) show that the translation 

dissipation-power (the slope of the corresponding curve) is 

maximum at t = 0 s, t ≈ 30 s, ... (pure translation); the same occurs 

for the torsional dissipation-power at t ≈ 15 s, t ≈ 45 s, ... (pure 

rotation). 

 
FIGURE 14. Details of the interaction energy and dissipated 

energies for the first 30 seconds. 

 

The interaction energy oscillates with frequency 2, with a 

beating frequency 2  and reaches zero amplitude every 

time the motion is purely rotational or purely translational. 
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Finally, we illustrate the results for normal modes (figure 15). 

 
Figure 15. Normal modes: above, the trajectories in the z -  plane, 

below the energy aspects. On top the results for normal mode 1 

(oscillation in phase and higher energy), on bottom those for normal 

mode 2 (oscillation in phase opposition and lower energy) are shown. 

 

These can be obtained by only changing the initial conditions 

values, which should be set (see Section V) as z0 = +0 for 

the normal mode 1 (in phase oscillation) and z0 = -0 for the 

normal mode 2 (oscillation in phase opposition).  

Figure 15 shows also the energy aspects for the two normal 

modes: note that the interaction energy, while oscillating, is 

positive for the normal mode 1 and negative for the normal 

mode 2. 

 

VIII. CONCLUSIONS  
 

The Wilberforce pendulum is a device that always 

arouses interest and curiosity [23] and is successfully used 

both in introductory and in advanced mechanics courses. It is 

particularly interesting from an educational point of view 

because it provides a nontrivial example of a system 

manifesting coupled oscillatory motions. There are also 

regular contributions on this subject in the literature, recently 

especially in relation to the use of new technologies 

(smartphone and video analysis systems [24]). In this paper 

we describe a novel apparatus that allows, using real time data 

acquisition, to independently capture both vertical and 

rotational displacement: using a MEMS driven by a EPS32 

microcontroller with built-in WIFI and Bluetooth, in 

connection with the free Phyphox application it is possible to 

obtain data that completely characterize the motion.  

The second part of the paper is devoted to analyzing the 

obtained data, particularly extending the analysis to energy 

aspects, first using the Excel spreadsheet, then making use of 

dynamic modeling. With the chosen software (InsightMaker), 

it was possible to highlight both the time evolution of the 

energy associated with the vertical and torsional oscillation 

motions, as well as that of the coupling energy and that of the 

dissipated energy, thus being able to verify the compatibility 

of the model with the principle of conservation of energy. By 

appropriately changing the initial conditions, to conclude we 

also obtained trajectories in 2-dimensional configuration 

space in the case of normal modes, an aspect that nicely 

highlights how the versatility of these tools is an example of 

an efficient didactical use of modern technologies. 
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