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ABSTRACT
We  propose  a  new  tool  for  laboratory  curricula  based  on  computer-aided  data  acquisition  and  analysis.  A
pendulum coupled to a low-friction rotary sensor offers variable length, variable mass, variable oscillation plane
(to  change  the  effective  gravitational  restoring  torque)  and  two different  kind of  damping torque:  “dynamic
friction” (almost constant) and “viscous” proportional  to the angular velocity.  Simple models implemented in
common spreadsheets allow to compare the experimental results with the theoretical predictions.
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EXPERIMENTAL SETUP

Our pendulum is made of a perforated rubber ball  (approximating a point-mass) attached to a thin
aluminum rod (a knitting needle) whose end is fixed to the rotary sensor axis (figure 1). The pendulum
effective length can be varied by sliding the rubber ball along the rod. The mass may be changed by
using rubber balls of different sizes. The angular deviation from horizontal position of the pendulum’s
rotation axis can also be varied, and measured by a goniometer mounted close to the encoder.

Figure 1. The RTL pendulum. Left: picture, right: schematics

When the rotation axis is horizontal, the oscillation may be damped by two kinds of resistant torque TR:
1) a viscous drag provided by a magnet placed close to an aluminum disc fixed to the rotary sensor axis
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(the Foucault currents due to the magnet-disc interaction produce a torque proportional to the angular
velocity of the disc), or 2) a nearly constant torque (dry friction) provided by a small brush sweeping
the disc. The intensity of each resistant torque may be varied by adjusting the position (of either the
magnet or the brush) with respect to the disc.

The RTL data acquisition system (RTL = acronym for Real Time Laboratory) exploits an home-made
rotary sensor with low-friction optical encoder1, connected to a TI graphing calculator through CBL
interface (or to a PC through a LabPro interface).

THEORETICAL MODEL

Let us consider a pendulum consisting of a uniform thin rod of length l and mass  m rotating about a
fixed pivot located at one of its end. The rod is attached to a uniform disc of mass  m' and radius  r
centered on the pivot and damped by a resistant torque TR. A point–like mass M is fixed on the rod at
the distance L from the pivot.

Figure 2. Sketch of forces for the ideal pendulum

The  motion  equation  may  be  obtained  by  equating  the  time  derivative  of  the  angular  momentum
(I d/dt) to the net torque T=(ml/2 + M L) g sin + TR (),

I d2/dt2 = (ml/2 + M L) g sin + TR()

where   is the elongation,  = d/dt is the angular velocity,  I = 1/3  ml2+  M L2  + 2/3  m’r2 is the
momentum of inertia, and TR() is the resistant torque whose value depends on the kind of damping
mechanism.

The equation may be simplified into the form:
d2/dt2 =-g F/L sin+ TR()/I

where the coefficient F accounts for the pendulum non-ideality (due to the masses of the rod and of the
disc):

F=(1+ 12
ml
ML )/(1+ 13

ml2

ML2
+
2
3
m' r2

ML2 )
1 See LEPLA Project http://www.lepla.edu.pl; we successfully tried also a Vernier rotary sensor (model
RMV-BTD), by adding the aluminum disc, magnet and brush.
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For  l » L ,  r<<l , and  m,m’<<M we get  F »1 ,  and the equation becomes the equation for  ideal
pendulum with damping:

d2/dt2 =-g/L sin+ TR()/I [1]

For small oscillation amplitudes it may be approximated (by letting sin f » f ) as:

d2/dt2 =-g/L + TR()/I [2]
which,  for  TR =  0  (no  damping)  has  the  well  known (stationary)  harmonic  solution  with  angular
velocity =√(g/L) and period T=2√(L/g).

PENDULUM MOTION WITH DAMPING

1) Dry friction.

Let us consider first the case of dry friction damping (Molina 2004), produced by a brush sweeping the
disc.

Assuming a constant friction torque with negative sign with respect to the sign of the angular velocity
=d/dt,  we  get  TR =  +C  for   >0,  TR =  –C  for   <0  ,  and  TR =  0  for   =0,  
i.e. TR = C sgn() , and the motion equation becomes:

d2/dt2 =–g/L s(C/I) sgn(d/dt)

Let us analyze small oscillations starting from initial elongation 0 at rest  (0 =0).
During the first half-oscillation the pendulum will sweep the total angle  0 + 1, and it will reach a
situation ( = 1,  =0) where we may calculate the energy balance.
The initial potential energy  MLg(1-cos 0) equals the new potential energy  MLg(1-cos 1) plus the
energy lost due to the dry friction work C( 0 + 1), or:

MLg(cos 1– cos 0) = C( 0 + 1).
By using the Werner formula, we have:

 (cos 1– cos 0) = 2sin[( 0 + 1)/2] sin[( 0 –  1)/2]
and using again the approximation sin f » f :

(cos 1– cos 0) = ( 0 + 1)( 0 – 1)/2

the energy balance equation gives for the elongation decrement =(0 – 1) during the half-period:
 = 2C/MLg

The calculation may repeated for the second half-period, leading to the same result.

As a conclusion: the elongation, during each half-period, decreases by the constant value =2C/MLg.
For small oscillations, also the period is constant, thus the amplitude must decrease linearly with time.

How many periods can be completed by the damped pendulum? The pendulum may move in the
gravitational field, only if the gravitational torque is larger than the resistant torque: i.e. when

M L g i   > C

An evaluation of the friction torque C  may be derived by the previous formula: C=MLg/2, where 
the decrement   is expressed in rad.

2) Viscous damping

Let us now analyze the case of  viscous damping,  produced by the magnet-disc  interaction (torque
proportional to the angular velocity).
The motion equation is now:
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d2/dt2 =–g/L s ( /I)d/dt
or, with the positions =/2I and o

2 = g/L :

d2/dt2 d/dt + o
2

This equation, for small damping (<< o) has the solution:

 = o e−dt coswt
where w=√w0

2
−d2»w0 .

The elongation amplitude should therefore decrease exponentially, i.e. the decrement during each half-
period should decrease proportionally to the amplitude itself.

EXPERIMENTAL RESULT FOR DRY FRICTION AND VISCOUS DAMPING

The rotary encoder allows recording the elongation  versus time. From the measured values we may 
calculate and graph the absolute values of , and use them to build a new plot of the peak values of  
(amplitude) versus time.

1) Dry friction.

In figure 3 we report two records of the oscillations (obtained with a pendulum length l = 0.5 m, a mass
M = 30 g) for two values of the friction torque .

Figure 3: Oscillations recorded with different values of the dry friction

The expected linear dependence of the amplitude on time is apparent.  The last  oscillations in both
graphs indicate that the damping decreases at very small elongations: this is due to the brush bristles
elasticity that kills the sliding friction (when the disc motion is small, the bristles bend and their free
end follows the disc rotation: the point contact is fixed on disc and no sliding occurs).

The values of the slope, in the linear fit of amplitude vs. time, are  –3 degrees/s and  –6.5 degrees/s,
respectively. With a period given approximately by  T = 2√(L/g) = 1.42 s we may calculate in both
cases the value of  , and we obtain for the friction torque C = MLg /2 the two values C = 5 mJ and
C = 12 mJ , respectively.

2) Viscous damping

The same procedure may be used to analyze the motion in case of viscous drag, due to the magnet-disc
interaction.

In figure  4 we report  the  graphs of  elongation vs.  time and exponential  best  fits  to  the  curves  of
amplitude vs. time, for two values of magnet-disc distance (1.5 mm and 1 mm , respectively).
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Figure 4: Oscillations recorded with different values of the viscous damping: the amplitude vs. time is
fitted by an exponential function at left and a linear regression of the natural log of amplitude vs. time is

shown at right. 

The fitting curve is f ( t )=f 0 exp(−dt )+ f 1 , where the damping coefficient d  is the reciprocal of the
decay constant  . Reducing the magnet-disc gap decreases the time constant from 33 seconds to 14
seconds.
Equivalent plots on the right side of figure 4 show the logarithm of amplitude decreasing linearly with
time.

PENDULUM MOTION AT LARGE AMPLITUDE

The motion equation [1], valid for large amplitudes, cannot be easily solved by high-school students
(and often not even by college students) using mathematical analysis, due to the difficulty introduced by
the non linear term sin in the restoring force. However computer simulation and iterative numerical
computation may be used to overcome this difficulty.

The software may be any spreadsheet (as Excel), and the numerical method may be that proposed by R.
Feynman (1968) in his famous Lectures on physics to study planetary motions.

The Feynman method

By studying the pendulum motion at discrete time intervals of arbitrary length Δt we may define the
angular velocity (t+t) at the time (t+t) in terms of the of mean acceleration m and the velocity 
(t) at the time t :

w ( t+Dt )=w ( t )+αmDt
Similarly, the angular displacement (t+t) at the time (t+t) may be written in terms of the average
angular velocity m:
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f (t+Dt )=f (t )+wmDt

These equations give us the values of angle and angular velocity after the time interval t if we know 
(0),  (0) and  (0). By iteration we may calculate these values for  t = 2t,  t= 3t,  and so on. For
average velocity Feynman uses the velocity calculated at the time in the middle of the interval, and for
the first midstep assumes (t)= (0)+(t/2)(0).

Let us first consider the case of no damping. From the tangential acceleration a=gsin (calculated as
a=f/m from the tangential force f = mgsin) we obtain the angular acceleration α=(g / l )sin f , with 
expressed in radians.

With the Feynman method we should use in the spreadsheet the formulas:
(t) = – (g/l) sin (t)
 (t+t/2)= (t-t/2)+(t) t
(t+t)=(t) +  (t+t/2) t

An equivalent approach consists in using the initial acceleration in computing the velocity and the final
velocity in computing the angle, using in the spreadsheet the simpler set:

(t) = –(g/l) sin (t)
 (t+t)= (t)+(t) t
(t+t)=(t) +  (t+t) t

Figure 5 shows the result of the iterative calculation for not damped pendulum, with l=0.5 m, t = 0.05
s and  (0) = 90° (large amplitude oscillations)

Figure 5: Calculated elongation  (line), angular velocity w (dotted line), angular acceleration a
(dashed line) vs. time

We may observe that the predicted motion is not harmonic (while the angle plot  (t) might appear as a
sinewave, the acceleration plot (t) is clearly not sinusoidal).

Prediction for damped pendulum

If we introduce into the model a damping force (a force that  is always  opposite to the velocity)  a
corresponding acceleration must be inserted into the motion equation:

In the case of sliding  “dry friction” we have:
α ( t )=-(g /l )⋅sin f ( t )−C⋅sign [w ( t )]

where C is a constant.
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In the case of viscous damping
α ( t )=-(g /l )⋅sin f ( t )−2d⋅w ( t )

where 2 d  is also a constant.

Figure  6  shows  the  prediction  for  sliding  friction  with  l  =  0.5  m,  t  =  0.03  s,   (0)  =  90°  and
C = 0.5 rad/s2. We may observe that the behavior is quite similar to that shown in figure 3a.

Figure 6: Simulated oscillations with dry friction

Figure  7 shows the  prediction  for  viscous friction  with  l  = 0.5  m,  t  =  0.03  s,   (0)  = 90° and
2 =0.3 s-1.

Figure 7: Simulated oscillations with viscous damping

COMPARING SIMULATION AND EXPERIMENTAL DATA
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By properly adjusting the parameters (initial values, friction coefficients) in the numerical calculations,
we may test our models on the experimental results, as shown in figure 8 and 9.

Figure 8: The line represent the values calculated with the “sliding friction” model 
using C = 0.35 rad/s2, and the dots are the measured values.

Figure 9: The line represents the values calculated with the “viscous friction” model 
using 2 = 0.153 s-1, and the dots are the measured values
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THE PENDULUM MOTION WHEN THE ROTATION AXIS IS TILTED WITH RESPECT TO
THE HORIZONTAL DIRECTION.

When the pendulum rotation axis is tilted by an angle , with respect to the usual horizontal position,
the component g’ of the gravitational force acting on the mass M which produces the driving torque is
reduced by the factor cos.
Therefore  the  harmonic  solution  of  the  motion  equation  will  predict  a  reduced  angular  velocity
’=√(g’/L) =√(gcos/L) and an increased period T’=2√(L/gcos).

Table 1: The predicted and measured values of the period for different tilt angles

Angle β (degrees) (cos β)1/2 T ‘(s) Tmeas (s)
0 0.000 1.41 1.41
5 0.997 1.41 1,40
10 0.99 1,42 1,41
15 0.98 1,44 1,42
20 0.96 1.47 1.44
25 0.95 1.48 1.45
30 0.93 1.51 1.48
35 0.90 1.56 1.52
40 0.87 1.62 1.57
45 0.84 1.68 1.61
50 0.80 1.76 1.68
55 0.75 1.88 1.79
60 0.70 2.01 1.85

In Table  1 we report  a  comparison between the predicted and measured values  for  the  period for
different values of the tilt angle .

The same data are graphically shown in figure 10 :

Figure 10: Calculated (squares) and measured (circles) periods vs. the tilt angle  and vs. (cos )-1/2

The expected dependence of the measured period on the inverse square root of  cos is substantially 
confirmed.

The slight systematic difference between the measured periods and the values predicted by the model
may be explained by considering that the thin rod is not perfectly rigid: it bends more and more when
increasing the tilt angle (due to the mass weight) and this produces an increasing error in the measured
tilt angle .
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