
Revista Brasileira de Ensino de Física, vol. 44, e20220072 (2022) Articles
www.scielo.br/rbef cb

DOI: https://doi.org/10.1590/1806-9126-RBEF-2022-0072 Licença Creative Commons

The lock-in amplifier: what is it for? how to build one?
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A short description of the lock-in technique gives an idea of the working principle of these useful devices, that
are spreadly used in weak signals detection, but rarely treated in introductory courses. Simple and cheap circuits,
that may be easily assembled by the student are suggested, as a practical approach to this powerful technique.
Keywords: Lock-in, phase-sensitive detector, signal recovery.

1. Introduction

The progress of technology and science in recent decades
has increasingly been accompanied by an effort to
improve the accuracy of the measurements, and this has
led the experimenter to seek new methods to reduce the
causes of error.
The Lock-In Amplifier (LIA) is an instrument (it

would perhaps be more accurate to say a method of
manipulating signals) which in recent years has con-
quered practically all sectors where high precision in
measurement is required, but it still rarely appears in
didactic texts [1, 2].
For this reason, it seemed useful to offer here an essen-

tial description of this technique, which is in many cases
irreplaceable, also showing, through simple examples of
circuits that anyone can build on their own, how it is
not so difficult to use it.
This article is aimed at two categories of readers: on

the one hand (Sections 2–>7) to beginners in electronics
who are only interested in knowing what a LIA is
and what it is used for, and on the other hand (8–9)
to electronics enthusiasts who, unwilling or unable to
face the high costs of the commercial models of this
instrument, want to try to build one that combines
the merits of a decent “performance” with that of a
negligible cost.

2. Signals and Their Fourier Series
Decomposition

A signal is any physical quantity that can be used to
transfer information: depending on the characteristics
to be highlighted, one can distinguish between analog or
digital, periodic or aperiodic signals.
The examples that can be done are numerous: acoustic

signals (pressure waves), optical signals (intensity of
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illumination, succession of light and dark intervals,
direction of the polarization plane), electrical signals
(modulation in current, in voltage, in frequency).
To remain in the context of electrical voltage signals

only, without losing generality, since it is always possible
to convert a signal of another type into an electrical
potential difference, we can distinguish between analog
signals in direct voltage, also called DC signals, or
continuously variable over time, also called AC signals,
and signals which assume instead only discrete voltage
values (typically two), called digital signals.
For digital signals what carries the information is the

sequence of discrete values (usually two), information
that is not lost if these values are affected by a small
error, at least as long as the signal detector is able to
distinguish between the two different values.
For analog signals, the information is instead largely

contained in the form of the signal, which can be more
easily distorted by the presence of a disturbing signal
(noise).
The “noise” can therefore be defined as a signal, not

originating from the source we are interested in, which
overlaps what we want to reveal, sometimes completely
obscuring it: in this case we speak of too small a value
of the signal/noise ratio (S/N).
To see the question a little better, however, the signal

must be characterized not only in terms of amplitude,
but also in terms of frequency. That is, its dependence
on time must be taken into consideration.
Let us first consider a periodic signal, that is, one that

repeats itself after a certain time interval T, called period
(an aperiodic signal can always be seen as a periodic
signal with an infinite period). A simple signal of this
type is the sinusoidal one: V (t) = VM sinωt, where VM

is the amplitude and ω = 2π/T the angular frequency
(ω = 2πf, where f is the frequency).
Since mathematical analysis allows us to decompose

a periodic function of any type into a sum of a (finite
or infinite) number of sinusoidal terms of suitable ampli-
tudes and frequencies (Fourier’s theorem), we can always
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think of any signal as constituted by superposition of its
sinusoidal components.

A diagram showing the frequency on the abscissa and
the amplitude of the Fourier components on the ordinate
is called the signal spectrum. For example, the spectrum
of a signal that faithfully reproduces the sound of a
tuning fork will essentially consist of a line centered on
the fundamental frequency of the tuning fork, while a
signal produced by my voice that reads these lines will
have a much more complicated spectrum, with a fairly
large distribution. extended on the audible frequencies.

If we record our voice and the sound of the tuning fork
at the same time, the resulting signal is the sum of the
two, and we can alternatively consider one or the other
as noise. If now we want to “clean” the signal of the
tuning fork from the “noise” of our voice we would have
to remove all the lower and higher frequency components
than the mechanical resonance of the tuning fork, that
is, we would have to pass the signal through a pass-band
filter. Conversely, if we want to eliminate the sound of
the tuning fork, now seen as noise, from the recording,
we have to pass the signal through a stop-band filter,
which removes only the fundamental frequency of the
tuning fork, leaving the sound of our voice practically
intact.

3. Traditional Filters and Their Limits

A filter is an electrical circuit that has a frequency-
dependent transfer function W (ω). By transfer function
we mean the signal ratio between the output signal Vo
and the input signal Vi.
The somewhat vague term “signal ratio” used here

does suggest a ratio between the amplitudes, which does
not take into account the phase relationship between
input and output. To be more precise, one should use
the signals description in complex notation, and then
the ratio between the amplitudes corresponds to the
modulus of W (ω).

If the filter consists only of passive components
(resistors, capacitances and inductances) the transfer
function module has normally values between zero and
one, i.e. it can only attenuate the signal. If you also use
active components (amplifiers) in the filter you can have
W (ω) > 1.
A real passive filter can be described approximately by

the corresponding ideal filter in which W (ω) assumes
only 0 and 1 values: in this case the frequency range
in which W (ω) = 1, is defined as the passband, and the
frequency range in whichW (ω) = 0 is named stopband.

The real passive filters are approximated by the
corresponding ideal filter by setting W = 0 in the
frequency region where W (ω) < 1/

√
2 = 0.7 and W = 1

in the frequency region whereW (ω) > 1/
√

2, that is, the
transition region between large and small attenuations
is approximated with a vertical segment. The transition
frequency ωt between the two regions, that is, the one

Figure 1: Real (blue) and ideal(red) transfer function for the
four main filters.

for which we have W (ωt) = 1/
√

2, is named cutoff
frequency.
Based on the shape of W (ω), the low-pass, high-

pass, passband and stopband filters can be distinguished
(Figure 1).
Again in this schematization of the passband and

stopband filters we can define as quality factor the ratio
Q=f 0/(f 2–f 1) between the center frequency f 0 and the
bandwidth defined by the difference f 2–f 1 between the
two cut-off frequencies. It is obvious that, the higher the
Q, the more selective the filter, both in transmitting only
the signal around f0, and in eliminating only the signal
around f 0.
Ideal selective filters have zero bandwidth, that is

Q =∞, and the shape of their transfer function is a
vertical segment centered on ω0.
If we then have a weak purely sinusoidal signal, which

is masked by a high noise distributed over a wide
frequency range, and we want to accurately measure the
amplitude of the signal, we can try to use a band-pass
filter tuned to the frequency to be detected, with a very
high Q. For Q→∞ the amplitude of the residual noise,
i.e. the noise at frequencies lower and higher than that
of the signal, tends to zero at the filter output, so that
the weak signal can be amplified and detected.
In practice, however, the maximum value of the

quality factor that can be conveniently used is limited
by various causes. One of the main problems that arise
is that of stability: if the band becomes very narrow, a
small shift in the central frequency (due to the sensitivity
of the components to external factors, such as temper-
ature, aging . . . ), or a small variation in the frequency
of the signal than the one the filter is tuned to, make
the signal disappear at the output. Typically, things
get complicated for Q > 100, which means that the
filter is unable to eliminate the noise components whose
frequencies are less than 1% from the signal frequency.

4. A Particular Filter: The Lock-In

An alternative solution to the problem just illustrated
can be represented by a particular filter which has
the characteristic of being “locked” to the signal to be
detected. This is the so-called “lock-in” or also Phase
Sensitive Detector (PSD ).
Let’s say immediately that in order to use the phase

sensitivity detector it is necessary to have a reference
signal that has exactly the same frequency as the signal
to be detected. A reference signal that responds to this
characteristic is more readily available than it may seem
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at first glance. In fact, the weak signal to be detected
often arises as a response of a physical system to an
excitation signal: when this response is synchronous, as
happens in most cases, the excitation signal can be used
as a reference signal in the lock-in.
Furthermore, at the lock-in output, the sinusoidal

signal supplied to the input, more or less cleared of the
noise, is not reproduced, as for the tuned filter, but it
produces a DC voltage whose amplitude is proportional
to the amplitude of the signal to be detected. However,
this too is not an important limit, because the informa-
tion sought is not contained in the form of the signal but
in its amplitude.
The essential advantage of the lock-in is that it allows

to easily obtain an elimination of noise components that
are less than one part in 100,000 in frequency from the
signal, i.e. it is possible to obtain Q of the order of 105

even at very low frequencies, where traditional tuned
filters become very expensive and ineffective. In the lock-
in, the effects of the instability of the values of the circuit
parameters (due to temperature variations, aging ...) are
negligible: what can be slightly modified is in fact only
the Q value but not the tuning of the filter.

5. A Lock-In Made of a Synchronous
Switch + a Low-Pass Filter

Let us first consider a purely sinusoidal signal VS(t) =
VSM sin(ω0t) of pulsation ω0, whose amplitude VSM

is to be accurately revealed. We also suppose that this
“weak” signal is masked by a noise VN whose frequency
spectrum, distributed over a wide band, has components
whose amplitude is much greater than the amplitude of
the signal to be detected: in this case we say that the
noise “masks” the signal, or that the “signal to noise
ratio” is very small.
A “noisy” signal can therefore be seen as the overlap

VS + VN of a “pure” signal VS and the “noise” VN .
As indicated in the diagram of Figure 2, we apply the

sum signal VS +VN to the input of a low-pass RC filter,
through a switch D which is controlled, by means of a
suitable reference signal VR synchronous with VS , so that
D is closed on the signal during the positive half-wave
of VS and shorted to ground during the negative one.
The shape of the signal before (VS + VN ) and after

the switch (V1) is schematized in Figure 3a, where the
shape of the VS signal has also been highlighted, which
is actually hidden by the noise. After the filter, the
average voltage value is 〈V1〉 = VSM/π because the
average value of VN is zero, assuming that the noise has

Figure 2: The lock-in with synchronous switch ω showing a
non-harmonic movement.

Figure 3: Signal and noise before and after the synchronous
two-way switch.

no synchronous components with VS . In essence, this is
true if the noise VN is negligible at low frequency, that
is, if the average is carried out over a time that greatly
exceeds the reciprocal of the lowest frequency.
If the switch is controlled, always in synchrony with

VS, but with a certain delay t1, (i.e. with a phase shift
Φ = ω0t1) with respect to VS , the noise is still averaged
to zero, but the output voltage 〈V1〉 depends not only on
the amplitude VSM , but also on the phase shift Φ. The
situation can be represented as in Figure 3b, and the
average value provided by the low-pass filter is easily
obtained, as an integral over a single half-period, given
that in the other half-period the signal is zero:

〈V1〉 = 1
T

∫ t1+T/2

t1

VSM sinω0t dt

= VSM

T

∣∣∣∣−cosω0t

ω0

∣∣∣∣t1+T/2

t1

= VSM

T
cosφ (1)

It is therefore evident that, in order for our signal to be
revealed, it must be cos Φ 6= 0, or Φ 6= (±π/2), because
otherwise 〈V 1〉 is canceled regardless of the VSM value.
The phase shift must be constant, if you want to avoid

any variation in the output voltage that is not due to
VSM variations, that is, if you want the output voltage
to be a faithful measure of the amplitude of the signal
to be detected only.

If, on the other hand, we already know that the signal
has a constant amplitude VSM, and we are interested
in its phase relationship with the reference signal VR,
the equation (1) shows that the output signal from
the synchronous filter precisely provides a measure of
the phase shift Φ, and this explains the name “Phase
Sensitive Detector” (PSD): if the amplitude of the VSM
signal is constant, the voltage at the output is just
a sinusoidal function of the phase shift between VS
and VR.

6. A Lock-In Made of a Multiplier + a
Low-Pass Filter

Let us now analyze another circuit, the one schematized
in Figure 4. Here the block marked by a × which
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Figure 4: The lock-in with multiplier.

replaces the synchronous switch of the previous scheme,
is a multiplier, that is a device that supplies to the
output V1(t) a voltage proportional to the product of
the voltages VS(t) and VR(t) present at the two inputs:
V1(t) = k VS(t) × VR(t). Often, in multipliers made up
of integrated circuits, the factor k is 1/10, but here we
choose for simplicity k = 1.
Suppose that VS(t) and VR(t) are two sinusoidal func-

tions: VS(t) = VSM sin ωSt and VR(t) = VRM sin ωRt.
Then the following relationship holds:

V1(t) = VSMVRM sinωSt sinωRt

= VSMVRM
cos(ωS − ωR)t− cos(ωS + ωR)

2 (2)

where Werner’s trigonometric formulas were exploited.
It can be seen that the signal V1, at the output of the

multiplier, has two components whose frequencies are
respectively the sum and difference of the frequencies of
the two input signals.
In the case in which ωS = ωR = ω0, and there is

a phase shift Φ between the input signals, we obtain
instead:

V1(t) = VSMVRM

2 [cosφ− cos(2ω0t+ φ)]

Now instead of the difference frequency component there
is a DC voltage component (“zero frequency”) which
depends on the phase shift, while the sum frequency
component is the second harmonic of ω0. At the output
of the low-pass filter, sized so that it is 2ω0 � 1/RC, we
have:

〈V1〉 = (VSMVRM/2) cos Φ. (3)

In the relationship (3) we find the same dependence
on Φ that occurs in (1), and in addition here the lock-
in output also depends on the VRM amplitude of the
reference signal. Here it is not enough to ensure stability
to the phase relationship between VS and VR, but also
the amplitude of the reference sinusoid must be stable,
if 〈V1〉 is to depend only on the value of VSM.

7. The Synchronous Switch as a
Multiplier for Square Wave

We can re-examine the operation of the first circuit by
thinking of the diverter as a multiplier of the V signal for
a square wave with an amplitude oscillating between 0

and 1 (i.e. for a VR signal that is zero in one half-period
and one in the other half-period).
A generic periodic signal, with period T = 2π/ωR can

be decomposed into a Fourier series as:

V (t) = a0 +
∞∑

n=1
an(sinnωRt+ φn) (4)

In the case of the square wave considered by us, a0 =
1/2, the even coefficients are all zero and the odd ones
are an = 2/πn. So VR can be written:

VR(t) = 1
2

+ 2
π

(
sinωRt+ 1

3sin3ωRt+ 1
5sin5ωRt+ · · ·

)
(5)

and the signal V1(t) product of VS(t) and VR(t)
becomes:

V1(t) = VSM

2 sinωSt

+ 2
π

(
sinωStsinωRt+ 1

3sinωStsin3ωRt+ · · ·
)
.

(6)

If here too we impose that the reference signal VR
is synchronous with VS, that is ωR = ωS = ωo, in (6)
there remains only a term independent of time (or “zero
frequency”), the one originating in the product between
VS and the fundamental component of VR. This term is
the only one that survives after the low-pass filter and
we get again the result given by (1), if we also consider
a possible phase shift Φ between VS and VR.
If we now suppose that the noise VN added to VS

has a DC component VOS, that is, both VN + VS =
VOS + VN(t) + VSM sinω0t (VOS is called offset, or “zero
frequency component”), then this component reappears
added to the output:

〈V1〉 = 1
2VOS + 1

π
VSM cosφ (7)

Furthermore, it can be seen from (6) that all odd
harmonics (2n− 1)ω0 of VS also contribute to 〈V1〉, and
the bandpass of the lock-in, i.e. the spectrum of the
signal measured by 〈V1〉, is the one described in Figure 5.
The width ∆ω of the pass-bands centered at

ω0, 3ω0, 5ω0, . . . is fixed by the time constant RC of
the low pass filter: ∆ω = 2/RC. This means that the
noise components in VN with pulsation ωi such that
|ωi − nω0| < 1/RC, with n odd, cause a modulation
of the DC voltage 〈V1〉 at the output, and therefore
reappear as noise, albeit with a spectrum translated to
low-frequency.
The lock-in with a square wave multiplier can ulti-

mately be seen as a parallel of infinite lock-ins with a sine
wave multiplier, each of which has as its reference signal

Revista Brasileira de Ensino de Física, vol. 44, e20220072, 2022 DOI: https://doi.org/10.1590/1806-9126-RBEF-2022-0072



Torzo and Delfitto e20220072-5

Figure 5: Pass band of a lock-in with square wave reference.

an odd harmonic of the signal to be detected, of linearly
decreasing amplitude with the order of the harmonic.
Since the value of the RC time constant of the low pass

filter is limited only by the need to obtain reasonable
response times τ for the lock-in (τ ≈ 5 RC is the time
taken by the output voltage to reach values practically
equal to the final ones, starting from the instant in which
the amplitude of the VS signal is changed), it is possible
to use RC values that are quite large compared to 1/ω0
and thus obtain for the quality factor Q = ω0/∆ω values
of the order of 105. For example, if f = 2π/ωo ≈ 10 kHz,
it is enough to set RC = 10 s to obtain Q ≈ 105.
So far we have considered multiplying VS by a square

wave that oscillates between the values 0 and 1 (this
is in fact the result of the synchronous switch), but we
can also think of multiplying it by a square wave that
oscillates between −1 and +1 (using for example an
amplifier with gain that switches between −1 and +1
at each half-period). In this case we have in relation (4)
ao = 0 and an = 4/πn, and the square wave is described
by:

VR(t) = 4
π

[
sinωRt+ 1

3sin3ωRt+ 1
5sin5ωRt+ · · ·

]
,

(8)
and the mean value of the product V1(t) = VS(t)VR(t)
becomes:

〈V1〉 = 2
π
VSM cosφ (9)

This consideration shows us how the circuit can be
modified to obtain the elimination of the zero-frequency
band, so as to clean the signal from the unwanted
“offset” voltage Vos.

8. The Synchronous Filter

Another circuit, which is similar to those examined so
far, is the “synchronous filter”, schematically represented
in Figure 6.
Here the reference signal VR is again a square wave,

synchronous with the signal to be detected VS, which
drives a diverter between two equal capacities: the sum
VS + VN, of signal and noise, is integrated separately
in the two half-periods by two low-pass filters with the
same time constant RC.
If VR and VS are in phase, after a certain time, which

is proportional to RC, the two capacitors will be charged

Figure 6: Synchronous filter.

Figure 7: Three lock-in amplifier block diagrams.

respectively to the voltages +(2/π)VSM and −(2/π)VSM,
corresponding to the average value of VS over each half-
period.
The output signal will therefore be a square wave

with zero mean, synchronous with VS, and of peak-to-
peak amplitude proportional to the signal to be detected:
V1pp = (4/π)VSM. The noise is substantially averaged
to zero as in the previous schemes.
The usefulness of this circuit, which is often used

together with the lock-in, is better understood if we
consider that when one needs to detect a small signal
hidden by noise, it is necessary to introduce a very strong
amplification, and this presents some drawbacks that can
be eliminated precisely by using a synchronous filter.
The drawbacks are essentially two: (1) the real ampli-

fiers have a DC voltage at the output even with a null
signal at the input (offset), (2) the real amplifiers have
a linear zone of finite amplitude, i.e. with too high gains
higher signals at the input are cut off (saturation). The
signal to be detected can be much smaller than the offset,
and therefore if a single amplifier with high gain is used,
saturation can also be obtained due to the effect of the
offset alone.
To overcome this problem, instead of a single amplifier

with large gain, several amplifiers in cascade AC coupled,
each with limited gain, are usually adopted, and such
that the product of the gains of the individual stages
provides the desired amplification. In this way, the offset
introduced by each stage is cut and is therefore not
amplified by the subsequent stages (Figure 7a).
In this configuration, the problem of AC noise still

remains, which, amplified more and more at each stage,
can still produce saturation in the last stage. In dia-
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gram 7b this drawback is eliminated, by filtering the AC
noise with the lock-in at the output of the pre-amplifier;
however, since the second stage must be DC coupled (the
lock-in output is a direct voltage), if it has a very high
gain it introduces a large offset that can no longer be
separated from the signal.

In the diagram of Figure 7c, which uses a synchronous
filter after the preamplifier, the noise is filtered, and an
AC signal remains, which can still be greatly amplified
by the second stage, before being detected by the lock-
in, without producing saturation and without offset
problems. A last DC stage can further amplify the signal
at the lock-in output. This is a configuration that is often
adopted in commercial lock-ins.

9. Some Practical Schemes

Now that we have analyzed the essential characteristics
that our lock-in must have (Figure 7c), we can try to
build a relatively simple one.
Let’s start by considering an amplifier that multiplies

the input signal by ±1 in sync with the reference signal.
If we use an operational amp to build this amplifier,
the simplest scheme at our disposal is the one shown in
Figure 8a.
This diagram, if the operational amplifier (OA) is

considered ideal, it works as an inverting amplifier
with the switch closed and as a non-inverting amplifier
with the switch open. (In an ideal OA, the open-loop
amplifications ± A of the non-inverting and inverting
channel can be assumed to be infinite, and the bias
currents to be zero.)
For the low-pass filter we can adopt an active filter

scheme like the one shown in Figure 8a,b which intro-
duces a DC gain at the output. In fact, for this circuit,
the transfer function is:

V (jω) = Vu

Vi
= −R0

Ri

1
1 + jωV R0C

(10)

where −(Ro/Ri) is the DC gain, and ft = 1/(2πRoC) is
the cutoff frequency.
We now need to build a switch that is VR controlled.

The simplest type of electronic switch1 is the one made

Figure 8: Lock-in scheme; a: amplifier with gain ± 1; b: active
low-pass filter.

1 There are various models of Analog Switches, usually with double
or quadruple switches, for example CD4016, DG201, LF11201,
SW201, HI201.

Figure 9: Scheme for obtaining a single-throw single-pole switch
using two on/off switches.

up of MOSFET transistors and which is marketed under
the name of analog-switch: it can be schematized as a
variable resistor that is driven by a voltage signal sent
to the control electrode (gate), and has a resistance of
the order of a few tens of ohms if closed, and a few MΩ if
open. It is a very fast switch: the typical switching time
is in fact of the order of a microsecond.
A problem that may arise with this device is the

crosstalk effect (interference) between the command
signal and the signal transmitted by the switch. This
can be significantly reduced by using optical coupling,
i.e. by using a photo-transistor driven by a LED diode.
Finally, we show how the single-throw single-pole

switch (Figure 9-left) used in Figure 6 for the syn-
chronous filter can be obtained, using two single on/off
switches (Figure 9-right) with a common pole controlled
in push-pull mode.
In the synchronous filter, to reduce the offset due

to the asymmetry of the spikes induced by the control
signal VR (square wave), it is advisable to connect the
switches to ground (as in Figure 9, instead of as in
Figure 6).
Ultimately, a practical scheme to create the circuit

schematized as blocks in Figure 7c, can be the one shown
in detail in Figure 10.
Some comments on the values that have been adopted

for the active and passive components in the example of
Figure 10.
Only 6 easily available and inexpensive ICs are used:

IC1 and IC2 are low noise OA, IC4 and IC5 are dual
OA, IC3 is a quadruple analog switch (of which only
three switches are used: two in the block b and one
in the block d; in the fourth one, input, output and
control are placed to ground) and IC6 a common com-
parator (with the open collector output closed on a load
towards V+).
With the gains of preamplifier, AC amplifier and DC

amplifier set respectively at 100 (=10 MΩ/100 kΩ), 100
(=100 MΩ/100 kΩ) and 10 (=100 MΩ/1 MΩ), you get
an overall gain of 100,000 with which you can easily
detect input signals with an amplitude between 1 µV
and 50 µV. The circuit described here is not suitable
for accurately detecting smaller signals that become
comparable with the noise introduced by the effect of
the crosstalk spikes.
If you want to detect even larger signals (for example

up to 5 mV), to avoid saturation conditions, it is better
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Figure 10: Complete schematic of a lock-in. The dashed boxes identify the different blocks. a: preamplifier; b: synchronous filter;
c: AC amplifier; d: multiplier; e: low pass filter and DC amplifier; f: double comparator to drive the synchronous filter and the
multiplier.

to reduce the gain of the DC amplifiers. (G = 10) and
AC(G = 1), leaving the preamplifier gain unchanged.
In the diagram in Figure 10, RC filters with time

constants suitable for a working frequency f = 30 Hz
were used (to avoid mains interference at 50 Hz and
higher harmonics): the synchronous filter was calculated
for Q ≈ 10 (RC = 0.1 s, Q = πRCf ), and the low-
pass filter has been sized to provide a time constant
RC = 10 s, corresponding to a Q = 1000 at the working
frequency.
The larger time constant between the two is the

one that fixes the response time of the instrument
to variations in the amplitude of the input signal: a
response time of the order of a few seconds is suitable
for most uses.
The scheme proposed in Figure 10 works correctly

for frequencies between a few Hertz and a few hundred
Hertz: the lower limit is set by the smallest time con-
stant, which must respect the inequality RC � 1/(2πf),
in order to maintain the phase shifts negligible. The
upper limit, on the other hand, depends on the turn-
on delay times of the switches and on the effect of the
spikes produced by the switching: both effects are more
noticeable as the frequency increases.
The circuit must be calibrated by zeroing the offset

at the output of the final amplifier with the input of
the preamplifier shorted to ground: in this way both the
effect of the IC3 and IC5 offsets and the DC contribution
due to the asymmetry of the spikes are eliminated
Calibration and linearity check can be more easily

performed by adopting a capacitive divider to inject the
sinusoidal signal, used as a reference, attenuated by a
factor C1/(C1+C2) = 105 at the input, according to the
scheme shown in Figure 11a.

Figure 11: a: Capacitive attenuator for calibration, b: Block
diagram for the detection of the “zeroing” signal of a bridge.

A typical application is finally shown in Figure 11:
the detection of the residual signal at the balance of a
bridge.
Since the simple lock-in scheme described here has a

single-ended input, it is advisable to power the bridge
through a transformer (for example with a unitary turn
ratio) and ground one of the two outputs of the bridge.
In this way it is no longer necessary to use a differential
preamplifier with a high common-mode rejection value
at the bridge output, and as a reference signal you can
simply use the transformer power supply voltage.

10. Conclusions

We presented here a general introduction describing
the lock-in amplifier technique, and some examples to
guide students in their first steps with LIA, using simple
components in order to make their task easier; however,
modern integrated circuits offer also more powerful ICs
that implements the scheme shown in Figure 4.
For example the AD630 chip [3], which contains both

the comparator with the analog switch and the output
buffer that provides the sum of the two signals (VS and
VR), may be used [4]. More suggestions may be found in
Torzo [5], Sengupta [6], Maya [7], Yang [8], and reference
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therein, while useful simulation using LabView may be
found in Trieu [9].
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