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We describe how the Atwood’s machine, interfaced to a personal computer through a rotary
encoder, is suited for investigating harmonic and anharmonic oscillations, exploiting the buoyancy
force acting on a body immersed in water. We report experimental studies of oscillators produced
by driving forces of the typeF52kxn with n51,2,3, andF52k sgn(x). Finally we suggest how
this apparatus can be used for showing to the students a macroscopic model of interatomic forces.
© 1999 American Association of Physics Teachers.
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I. INTRODUCTION

Simple Harmonic Motion~SHM! is usually studied in in-
troductory physics courses because it involves easy m
ematics and because two simple experiments may be us
examples: the pendulum and the spring-mass system. Ex
mental studies are often based only on measurements o
period from which the dynamic parameters of the system
derived.

However, in real systems the linear behavior, implicit
SHM, is rarely obeyed: most oscillators are only appro
mately harmonic~in the small-amplitude limit! while some
interesting features may only be explained if anharmonic
is taken into account~e.g., the expansion coefficient and th
specific heat of solids, jumping phenomena, transition
chaos,...!.

To investigate anharmonic oscillations we may study
pendulum where the restoring force isF52mg sinF: by
retaining the first two terms of the series expansion sinF
5F2F3/61¯ ; we get1 F5'2mg(F2F3/6)52kF
1k8F3.

A particular feature of the pendulum is that the restor
force mimics that of a spring thatsoftensat larger ampli-
tudes. Real springs, on the contrary, becomestiffer at larger
amplitudes, the restoring force beingF52kx2k8x3. Both
in the pendulum and in the mass-spring system the r
between the cubic and the linear term cannot be freely
ied: it is constant (k8/k52 1

6) in one case, while it depend
on the mechanical properties of the spring material in
other.2

A simple way to explore both harmonic and anharmo
oscillations, with a free and easy choice of the system an
monicity, is to use a modified Atwood’s machine, where o
of the two masses hanging from the pulley drops into a wa
bath.

The essential feature of this setup is that, sin
Archimedes’ force is a function of the immersed body v
ume, the behavior of the restoring forceF(x) can be changed
by modifying the body shape.

In this paper we report some experiments involving va
ous types of restoring forces, all of them exploiting the buo
ancy effect.

The physical model of this modified Atwood’s machine
described in Sec. II; we derive from the model the ma
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features of the motion of an oscillating cylinder for sma
amplitudes (F52kx) in Sec. II A and for large amplitudes
(F52k sgnx) in Sec. II B; in Sec. II C we study the case o
an oscillating triangle (F52kx2k8x2) and in Sec. II D the
case of an oscillating cone (F52kx1k8x22k9x3). In Sec.
III we describe the experimental setup and in Sec. IV
procedure used to characterize the system. In Sec. V we
port the data obtained for the different types of oscillatio
we compare the predictions provided by the models with
experimental results, and we exploit the discrepancies to
fine the models. Conclusions are drawn in Sec. VI and
calculation of the period versus amplitude for various rest
ing forces is reported in the Appendix.

II. OSCILLATIONS WITH THE ATWOOD’S
MACHINE

The Atwood’s machine is a device where two masses h
from the ends of a string passing over a pulley that can fre
rotate on its horizontal axis.

In the apparatus used in this study one of the two mas
(m2 with volumeV2) dips into a water bath~Fig. 1!.

The motion of the whole system can be simply describ
by the motion of the massm2 : here we use an orthogona
reference frame with a downward directed vertical axis.

If we assume a massless and inextensible string, the lin
accelerationa of the massm2 may be calculated by equatin
the torqueT applied to the pulley to the rate of change of
angular momentumd(Iv)/dt:

T 5R~t22t1!5d~ Iv!/dt, ~1!

whereT 5R(t22t1) is the net driving torque in the absenc
of friction, R is the pulley’s radius,I is the momentum of
inertia, andt1 andt2 are the tensions applied to the string b
the massesm1 andm2 , respectively.

The pulley’s angular momentum isL5Iv, where n
5vR relates the linear velocityn of m2 to the pulley’s an-
gular velocityv ~in the absence of wire slipping!.

Each one of the string’s tensions is related to the accel
tion a and to the other forces applied to each body, by
Newton’s law:

t15m1~a1g! and t25m2~g2a!2FA~h!, ~2!
228© 1999 American Association of Physics Teachers
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where FA(h) is the Archimedes force that, being propo
tional to the volume of the displaced water, is a function
the immersed heighth.

Relations~2! may be used to eliminatet1 andt2 from Eq.
~1!,

R~t22t1!5R@~m22m1!g2~m21m1!a2FA~h!#/dt

5Ia/R, ~3!

giving

a5
Dm g2FA~h!

m11m21I /R2 . ~4!

If Dm5m22m1 is less thanrV2 ~wherer is the water den-
sity!, the Archimedes force balances the gravity forceDm g
for some valueh0 of the immersed heighth: FA(h0)
5Dm g, and for any displacement from the equilibrium p
sition therestoring force Facting on the system is the op
posite of the change of the buoyancy forceDFA5FA(h)
2Dm g. In fact, when the body dips~positive displacement!
the buoyancy force increases~i.e., its change is positive! and
the restoring force is directed upward~i.e., is negative in the
chosen reference frame!: F52DFA .

If we defineM5m11m21I /R2 as thetotal inertial mass
of the system,3 the acceleration may be written as

a52DFA /M. ~5!

If we want to take into account the effect of dissipativ
forces, we may add to the driving torqueT5R(t22t1) a
friction torque Tf56R FF , where with FF we define an
effectivefriction force ~directed opposite ton2) applied to
m2 . In this case the accelerationa8 of m2 may be written as

a85a6FF /M, ~6!

where the6 sign depends on the direction of the velocit
which may be the same as or opposite to that of the ac
eration.

A. Harmonic oscillations of a cylinder: F 52kX

When the body m2 is a cylinder of radius r, the
Archimedes force isFA(h)5pr 2hrg, and its changeDFA

may be written as a function of the displacementX5h2h0

from the equilibrium position:DFA(X)5pr 2rg(h01X)
2pr 2h0rg5pr 2rgX.

This system is equivalent to the well-known mass-spr
system, the ‘‘elastic constant’’ being determined by the c
inder radiusr and by the liquid densityr.

From relation~5! we obtain the cylinder acceleration:

a52~k/M!X, ~7!

Fig. 1. Schematic of the Atwood’s machine.
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wherek5pr 2rg, showing that we are dealing with a simp
harmonic motion whose period is

T52pAM/k52pAM/pr 2rg. ~8!

In other words, as the cylinder rises above its equilibri
point, the Archimedes force decreases because a smalle
ter volume is displaced. This increases the downward fo
and causes the cylinder to fall. If it drops below its equil
rium point, the Archimedes force increases because a gr
volume is displaced; this causes the upward force to incr
and the cylinder to rise.

This description of the motion is valid as long as the
cillation amplitude does not exceed an upper limit abo
which the cylinder is completely immersed or completely
of the water.

B. Oscillations due to a constant restoring force:
F 52k sgnX

If the oscillation amplitude is made very large (X@ l ,
where l is the cylinder length!: the cylinder spends most o
the time completely outside or completely inside the wa
bath, and in each case the restoring force isconstant. In fact,
the restoring force when the whole cylinder is outside wa
is Dm g and when the whole cylinder is inside water
Dm g2FA( l )5Dm g@(h02 l )/h0#.

If we want to obtain a motion that is symmetric around
equilibrium point, we must leth05 l /2. In this case, if we
neglect the short transient during which the cylinder is p
tially immersed, the absolute value of the forcep( l /2)r 2rg
5Dm g remains constant while its sign changes when
cylinder crosses the water surface:

F52k sgn~X!, ~9!

wherek5p/( l /r )r 2rg and the acceleration is

a56k/M56p~ l /2!r 2rg/M. ~10!

In this type of oscillation4 the period is directly proportiona
to the square root of the amplitudeA, as may be easily see
by inspecting Fig. 2. TheX(t) graph is made, in fact, o
parabolic branches (X5at2/2), and within each branch th
relation between the baseDt and the heightA is described by
the equationA5a Dt2/2. The period is therefore

T54 Dt54A2A/a58AM/~pr 2lrg!AA. ~11!

C. Oscillations of twin triangles: F 52kzXzX

If we use, instead of a body withconstant cross section, a
body whose cross section changes linearly, the buoya
forces increases quadratically with depth.

Fig. 2. The displacement versus time plot for an oscillatorF52k sgn(x).
229Pecori, Torzo, and Sconza
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Suppose our body is a slab in the shape of twin triang
attached at their vertex and that the counterweight is cho
to keep the twin triangles in equilibriumhalf-submergedin
the water bath.

When the twin triangles are displaced by a lengthX from
equilibrium, the change in the displaced water volume m
be written byDV(X)5sb(X)X/25sBuXu(tana)X, whereB
is the triangle base,s the thickness,a the aperture angle, an
sb(X)52s(tana)uXu the cross section at the distanceX from
the vertex~Fig. 3!.

We are here assumingb(0)50, i.e., a zero cross section
the twin triangles’ vertex, so that the restoring forceF5
2DFA(X)52rgDV(X) becomes

F52kuXuX52kX2 sgn~X!, ~12!

and the acceleration, from relation~5!:

a52DFA~X!/M52~k/M!uXuX, ~13!

wherek5s tanarg.
A simple calculation, reported in the Appendix, prov

that a quadratic restoring force produces oscillations wh
period varies with amplitude as

T56.87AM/k/AA. ~14!

If the triangles’ vertex, in equilibrium, is placed at a distan
X0 from the water surface, the restoring force becom
asymmetric. It may be written asDFA5k@(X2X0)u(X
2X0)u1X0uX0u#, assumingX0.0 for vertex below the free
surface at equilibrium~andX0,0 above!.

Actually a real body shaped as twin triangles cannot h
a zero cross section at the midpoint@b(0)5b0 ; see Fig. 3#,
and therefore, even in the case of symmetric behaviorX0

50), a linear term (kb0 /tana)X in the restoring force can
not be completely avoided.

D. Oscillations of twin cones:F 52kX3

If the twin triangles are replaced by twin cones~with base
radiusr and aperturea!, the Archimedes’ force has a cub
dependence on the displacementX.

With a proper choice of the counterweight, the twin con
may be set in equilibrium with their vertex at the water s
face (X050). In this case a simple calculation of the di
placed water volume shows that the restoring force and
acceleration become, respectively,

F52jX3, ~15!

a52~j/M!X3, ~16!

wherej5p(tana)2rg/3.

Fig. 3. Schematics of the body shaped as twin triangles.
230 Am. J. Phys., Vol. 67, No. 3, March 1999
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A cubic restoring force, as shown in the Appendix, pr
duces oscillations whose period varies with amplitude as

T57.42AM/j/A. ~17!

As for the case of real twin triangles, also for real twin con
one has to account for the finite cross section at the join
the cones. Ifr 0 is the radius at the joint, the factorX3 in ~15!
and ~16! becomes@3(r 0 /tana)2X13(r0 /tana)X21X3#, pro-
ducing an asymmetric force:

F52j@3~r 0 /tan a!2X13~r 0 /tan a!X21X3#, ~158!

a52~j/M!@3~r 0 /tan a!2X13~r 0 /tan a!X21X3#.
~168!

The asymmetry, however, is small due to the fact thatr 0

!r . On the contrary, when the oscillation occurs around
equilibrium position with the cone vertexwell belowthe wa-
ter surface~e.g., X05h/2, whereh is the cone height! the
restoring force turns out to bestronglyasymmetric. This be-
comes important if we use asingle cone5 with amplitudes
X<X0 , where the restoring force is

F52j@~X2X0!31X0
3#52j@3X0

3X13X0X21X3#.
~18!

III. DATA ACQUISITION SETUP

The data acquisition system we used is based on aSerial
Interface6 connecting the host computer~either a Macintosh
or a PC! to a position sensor. The interface and the compu
communicate by the standard serial line~RS-232!. The
logged data can be displayed on the computer monito
various graphical representations using the dedicated s
ware, which also allows one to perform numerical fits a
other data handling. A real-time visualization of the kin
matic variables can thus be obtained.

The position sensor is made of an optical encoder,
tached to the pulley shaft7 that measures the pulley’s rotatio
angleq(t) from which one gets the linear displacementX(t)
of the hanging masses asX5Rq ~once known as the pulley
radiusR!.

The software calculates from the measured values of
position the corresponding values of the velocityn(t)
5dX(t)/dt and of the accelerationa(t)5dn(t)/dt.

A cheap and solid stand is provided by an aluminum tu
~1 in. diam, 1.5 m long! and a vise clamped to the border
a table~Fig. 4!. The tube is held vertically by screwing tw
metal blocks, with vertical V grooves, to the vise lips.

Fig. 4. Block diagram of the experimental setup.
230Pecori, Torzo, and Sconza
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The pulley is a metal disk~3 mm thick, radius R
550 mm) with a thin groove to keep the string~a dacron
fishing wire'0.3 mm diam,l50.125 g/m), and it is coaxi
ally fixed to the rotary sensor.

The massesm1 andm2 are brass bodies, attached to ea
end of the string by means of a screw with a thin axial h
~the string can pass through the hole but a string kno
blocked!. In order to avoid unwanted lateral oscillatio
when the motion is started, a small electromagnet can
used to block and release the counterweightm1 ~a cylinder
that bears an iron screw at its bottom!.

We used a perspex vessel~100 cm height and 10 cm diam!
in order to make visible the wholem2 path, but it may well
be replaced by cheaper~glass or metal! vessels.

IV. SYSTEM CHARACTERIZATION „THE CLASSIC
ATWOOD’S MACHINE …

Before performing the experimental study of the vario
type of oscillations, one needs to characterize the system
measuring the pulley’s momentum of inertiaI and the effec-
tive friction forceFF .

The easiest way to measure bothI /R2 and FF is to per-
form a set of measurements of the acceleration where
masses move in air. In this case (FA50) relation ~6! be-
comes

a85~Dm g2FF!/~ I /R21m11m2! or
~19!

Dm g5FF1a8M.

That is, if the sum of the two masses (m11m2) is kept
constant, a plot of different values of the driving for
Dm g5(m22m1)g versus the measured values of the ac
eration has slope (I /R21m11m2)5M and interceptFF .

This experiment may be easily performed by moving a
of extra masses of known weight from one body to the ot

An example of such a plot, obtained using two equal b
ies of mass 118.3 g and ten extra masses of 1.12 g eac~so
that m11m25247.8 g),8 is shown in Fig. 5.

The experimental data show a linear behavior, thus c
firming thatFF can be assumed to be constant. The bes
gives FF'(561)31023 N and a slope M5(0.347
60.003) kg. Therefore theeffective inertial massof the pul-
ley is I /R25M2(m11m2)5(0.09960.003) kg.

Fig. 5. Applied forceF versus measured accelerationa in the classic At-
wood’s experiment. The best fit straight line gives both the friction force
the total inertial mass.
231 Am. J. Phys., Vol. 67, No. 3, March 1999
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V. EXPERIMENTAL INVESTIGATION OF
HARMONIC AND ANHARMONIC OSCILLATIONS
IN WATER

A. The case of the cylinder

Figure 6 shows the plots of position, velocity, and acc
eration versus time, obtained with a brass cylinder~weight
m25143.6 g, diameter 15 mm and height about 100 mm!.9

The counterweight (m15135.0 g) was chosen so that
equilibrium the cylinder is half immersed.10 In this system
the motion is expected to obey the predictions of the mo
described in Secs. II A~at small amplitude! and II B ~at large
amplitude!.

After some oscillations, when the cylinder does not co
pletely exit from water~for t.45 s), the motion become
damped harmonic, as clearly shown by the same plots e
panded in Fig. 7.

The whole motion of the cylinder may be represented
two models:anharmonicoscillation prevailing in the initial
phase (t,45 s) andharmonicoscillation in the final phase
(t.45 s).

In plots like those shown in Figs. 6 or 7, one can use
mouse to move a vertical line~corresponding to the sam
value of the variablet! along all the plots, thus detecting th
values of all the other variables. In this way one can ea
measure the time valuest i when the acceleration chang
sign (X50). The differences,t i2t i 21 , give the values o
the half-periodsTi /2. In the same way one can measure
values of the maximum and minimum displacementsXi ,
which give the amplitudeAi .

d
Fig. 6. Plots of position, velocity, and acceleration versus time for the
inder oscillating inside and outside water.

Fig. 7. An expanded plot of the data of Fig. 6~harmonic motion!.
231Pecori, Torzo, and Sconza
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In Fig. 8 we report the values of the period as a function
AA: the full dots correspond to the first phase of the mot
~the best fitting line is also drawn!, while the open dots cor
respond to the second phase~the expected valueT
52pAM/prgr252.93 s of the harmonic motion
shown!.

The plot shows that the period is constant for small val
of the amplitudeA, i.e., when the cylinder ispartially im-
mersed~for A,6 cm), and increases linearly withAA at
larger amplitudes. The slope predicted by relation~11!: T
54A2/aAA54A2M/Dm gAA is 12.060.2 ~assuming an
uncertainty of 3 g on M and of 0.1 g onDm), while the
value obtained by fitting the experimental data islower
(11.760.1 s m21/2). These two values are compatible~the
error bars do slightly overlap! but one may still suspect tha
some second-order effect was neglected.

A reduction of the measured slope with respect to the
dicted one cannot be explained by considering effects s
as hydrodynamic mass11 ~extra inertial mass due to the wat
displaced by the moving cylinder! because it should increas
the measured slope with respect to the predicted one.
discrepancy may be explained by a small increase~say 0.2 g!
of the mass differenceDm58.6 g. The oscillating cylinde
in fact, after being dipped into the water, remains wetted
a water layer,12 and one may even see one water drop fall
just after it leaves the surface.

A direct measurement of the acceleration of the b
~when it is completely inside or completely outside the w

Fig. 8. Period of the cylinder oscillations as a function of the square ro
amplitude. Full dots: first phase of the motion. Open dots: second p
~harmonic motion!.

Fig. 9. Cylinder velocity plots.~a! the selected area refers to motion und
water;~b! the selected area refers to downward motion;~c! the selected are
refers to upward motion.
232 Am. J. Phys., Vol. 67, No. 3, March 1999
f
n

s

-
ch

he

y

y
-

ter! may be obtained as the slope of a linear fit of the veloc
versus the time plot@Fig. 9~a!#. We obtain as average abso
lute value of the positive and of the negative slopesa
5(0.22760.002) m/s2, to be compared with the value pre
dicted by relation~10! a5(0.22360.002) m/s2. Also, here
the errors bars do barely overlap, owing to the excess m
of the water film, neglected in relation~10!, that is respon-
sible for the larger observed mean acceleration.

Looking in more detail at thev(t) plot, which at first sight
looks like a triangular wave, we discover that the slope
slightly different in the first half and in the second half
each ‘‘quasilinear’’ portion of the plot. When the cylinder
inside water, the acceleration is larger when the cylinde
dipping into the water@Fig. 9~b!: a520.24860.001 m/s2#
and smaller when it is rising back toward the water surfa
@Fig. 9~c!: a520.20960.001 m/s2#.

The same happens when the cylinder is outside the wa
here the acceleration is slightly larger when the cylinder
rising toward the top position and smaller when it is fallin
back toward the water surface.

The observed discontinuitiesDa in the acceleration are
systematic and larger than the experimental uncertain
This feature reminds one of the behavior of a cart ridi
upward and downward on an incline, and it can indeed
justified by taking into account friction.

During the selected portion of motion in Fig. 9~b! the pul-
ley rotates clockwise, while during the motion selected
Fig. 9~c! it rotates counterclockwise, and therefore the fr
tion force has the same direction of the acceleration in
first case and the opposite one in the second case. We th
fore obtain the friction force for the cylinder underwater
FF5M(Da/2)5(761)31023 N. When the cylinder is in
air we obtainFF5(461)31023 N, in agreement with the
value obtained from the plot of Fig. 5, within the experime
tal uncertainties.

f
se

Fig. 10. Position versus time and acceleration versus position plots for
cylinder in the harmonic phase of the motion. The linear fit is made on
selected data.

Fig. 11. Plots of position, velocity, and acceleration versus time, and ac
eration versus position for the twin triangles.
232Pecori, Torzo, and Sconza
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A larger frictional force for the cylinder underwater
consistent with the extra dissipation due to the water visc
ity.

Turning to the harmonic phase of the motion, Eq.~7! gives
a prediction of the slopeb of the curvea(X): b52k/M

5prgr2/M524.57 s22. In Fig. 10 we report a fit of the
central part of the plota(X) ~that for X,6 cm) that gives a
slightly larger slope:b5(24.6660.05) s22.

This discrepancy may be explained by releasing an
plicit assumption that we made in our simple model. If
consider that the vessel has a relatively small inner ra
(R55 cm), we may suspect that thevertical shift of the wa-
ter level due to the volume of the water displaced by t
cylinder immersion cannot be neglected. If we take into
count this effect,13 by replacing the variableX with the vari-
able X85X@11r 2/(R22r 2)#51.023X, the expected slop
changes intob524.67 s22, in excellent agreement with th
measured value.

B. The case of the twin triangles

Figure 11 shows the plots of position, velocity, and acc
eration versus time, and acceleration versus position
tained with brass twin triangles~with s51 cm, h0510 cm,
b54.8 cm, b050.2 cm, m15384.8 g, m25408.9 g), using
a short vessel with a large inner diameter~30 cm! to make
negligible the vertical shift of the water level when the bo
dips into the water.

Measuring the period and the amplitude, as we did for
cylinder oscillations, we obtain for the twin triangles the d
shown in Fig. 12, where we plotted thefrequency f51/T

Fig. 12. Frequency of the twin triangles’ oscillations as a function of
square root of amplitude. Full line: purely quadratic restoring force. Do
line: numerical integration of the law of motion.

Fig. 13. Plots of position, velocity, and acceleration versus time, and a
eration versus position for the twin cones.
233 Am. J. Phys., Vol. 67, No. 3, March 1999
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versus the square root of the amplitudeAA, since we expect
from Eq. ~13! a linear behavior forf (AA), with a slope of
0.73 Hz/Am ~full line!.

A qualitative agreement with the predicted behavior
shown indeed by the experimental results at larger am
tudes; at smaller amplitudes, however, a clear departure
the x2 oscillator model is apparent.

A much better fit is obtained by taking into account a
the linear term due to the finite thickness (b052 mm) of the
twin triangles at their vertex: the dotted curve in Fig.
represents the values of the frequency calculated, for e
amplitude, by numerically integrating relation~A3!, as ex-
plained in the Appendix.

C. The case of the twin cones

A record of the motion of a twin cones-shaped body~two
brass cones, screwed together at their vertex, base radr
51.5 cm, heighth510 cm, m25494 g, counterweightm1

5461 g, radius at jointr 050.125 cm, tana50.1375) is
shown in Fig. 13.

In the graphs we measured the values of the period an
the amplitude, and then we plotted the frequency versus
amplitude, as we expect the behavior predicted by Eq.~16!:

f 50.135Aj/MA50.135Ap~ tan a!2rg/~3M!A. ~20!

In Fig. 14 we have drawn the straight line representing
expected behavior for a purelycubic restoring force~a full
line with slope 1.83A Hz/m). The dotted curve represen
the numerical integration of the law of motion~see the Ap-
pendix! that assumes a restoring force which includes a
the linear and thequadratic term predicted by Eq.~158!:
F(X)52j@X313(r 0 /tana)X13(r0 /tana)2X2#, wherer 0 is
the radius of the cross section of the twin cones vertex.

e
d

el-

Fig. 14. Frequency of the twin cones’ oscillations as a function of
amplitude. Full line: a purely cubic restoring force. Dotted line numeri
integration of the law of motion for the forceDFA(X)5j@X3

13(r 0 /tana)X13(r0 /tana)2X2#.

Fig. 15. Behavior of the expected restoring force for a single cone.
233Pecori, Torzo, and Sconza
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D. The case of a single cone: a macroscopic model of th
atomic vibration in solids

The analysis made in Sec. II D shows that for a sin
cone of heighth, in equilibrium at half height (X0'h/2), the
restoring force becomes2DFA52j@(X2X0)31X0

3#, with
2X0,X,X0 , andj5p(tana)2rg/3. The geometry of this
system, with the expected shape of the restoring forc
shown in Fig. 15.

Comparing this system to the well-known mass-spr
system, we note here that thespring stiffnessis no longer
constant: it increases forX.0 and decreases forX,0. In the
real world these kinds of forces are much more common
one might suppose at first sight. The cohesive force in so
is the simplest example. Short-range repulsion~the ‘‘hard
sphere interaction’’ due to the Pauli exclusion principle! var-
ies with displacement~with respect to the equilibrium pos
tion of the atoms! much faster than long range attraction~the
van der Waals interaction due to polarization!. Therefore the
atoms’ vibration in a crystal lattice is more closely appro
mated by the motion of a cone-shaped body floating i
liquid bath than by the usual mass-spring system. In f
only theasymmetryof the restoring force~and of the related
potential curve! may explain the positive thermal expansi
coefficient:14 a symmetric restoring force would give inste
zero thermal expansion coefficient.

If we unscrew the twin cones and change the coun
weight in order to keep in equilibrium~half immersed! one
single cone, the recorded oscillation is indeed asymm
@Fig. 16~a!#. The restoring force may calculated from t
measured acceleration asF(t)5Ma(t), knowing that the
inertial mass is now 0.544 kg. The calculated values@Fig.
16~b!# of the variableF(t) may be plotted versus the corr
sponding values of the variableX(t) @Fig. 16~c!#. In this plot,
the slope corresponds to the elastic constant in the m
spring system, and it is here larger forX,0 than forX.0.
In the same plot the dashed line represents the values o
function F52j@(X2X0)31X0

3#, calculated with the nomi
nal valuesj5200 N/m3 andX050.05 m.

Fig. 16. Plot of position~a! and restoring force~b! vs time for the single
cone. Plot of force versus position~c!: the dotted line represents the fittin
function F52j@(X2X0)31X0

3#.
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VI. CONCLUSIONS

The experimental results reported in this paper show th
MBL version of the Atwood’s machine is a simple and pow
erful device for investigating various kind of motions.

In particular, it can be used to introduce the students to
study of harmonic and anharmonic oscillations, the requi
physics background being restricted to elementary mech
ics.

At the introductory level, the study of nonlinear oscillato
appears to be important in order to provide the students w
examples of asymmetric restoring forces that are neces
to model the real behavior of solids, e.g., the nonzero th
mal expansion coefficient.

The apparatus described here combines efficiently the
vantages of the Atwood’s machine and those of the M
acquisition system. The Atwood’s machine is suitable
introductory level investigations because the basic featu
of the system influencing the motion of the bodies can
easily identified~and modified! by the students themselve
The data acquisition system can be a powerful cognitive t
by allowing a real time visualization of the relevant variabl
selected by the students according to any particular mo
they wish to test, and by encouraging the students to play
game of gradually refining the schematization in order
reach a satisfactory agreement with experimental data.
data accuracy that can be achieved with MBL is such
make the refinements possible and testable, as shown in
present paper.

APPENDIX: THE CALCULATED DEPENDENCE OF
PERIOD FROM AMPLITUDE

A simple dimensional argument that yields the correct
pendence of the periodT from the amplitudeA in a generic
oscillation driven by a restoring force of the typeF52kxn

is the following. The period may depend only on the qua
tities

m ~kg!, k @N/m2n5kg m12n s22#, A ~m!.

The only combinations of these quantities with the dime
sions of time, for different values ofn, areAm/k for n51,
Am/kA for n52 andAm/kA2 for n53. Therefore the period
must beproportional toAm/k, Am/k/AA, andAm/k/A, re-
spectively.

The proportionality constant must obviously be derived
a different method.15

The change in kinetic energyDE @betweenv50 for x
5x0 , and the genericv(x) for x<A# equals the work done
by the restoring force, and therefore we may write

1

2
mn2~x!5E

x0

x

F~x!dx. ~A1!

By solving this equation with respect to the velocity, we g

n~x!56A2E
x0

x F~x!

m
dx5

dx

dt
or

~A2!

dt5
dx

6A2

m E
x0

x

F~x!dx

.
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The integral in the last equation from the time of maximu
displacement (x05A) to the time when the system is in equ
librium (x50) gives the valueT/4, and therefore the perio
T is

T54E
A

0 dx

2A2

m
E

A

x

F~x!dx

~A3!

~the minus sign in the last equation is due to the fact
when the body approaches equilibrium its velocity is ne
tive!. We may use this equation to calculate the period o
oscillation due to a restoring force of the kind:F52kxn,

T54E
A

0 dx

2A2

m
E

A

x

~2kxn!dx

52A2
m

k
E

A

0 dx

A*A
x xndx

. ~A4!

The case of SHM (n51) may be integrated analytically
leading to the known resultT52pAm/k, and for the restor-
ing forceF52k sgnX we find T54A2m/kAA.

In the case of the twin triangles (n52) and twin cones
(n53) we may use instead numerical integration, obtain
T56.87Am/k/AA, and T57.42Am/k/A, respectively. We
used the function ‘‘Nintegrate’’ within the standa
‘‘ MATHEMATICA ’’ software package.16

Numerical integration may be easily performed also wh
the restoring force has a polynomial form as for real tw
triangles and twin cones, which cannot have a zero c
section at the vertex.

a!Also at Istituto di Chimica e Tecnologie Inorganiche e Materiali Avanz
~ICTIMA—Consiglio Nazionale delle Ricerche!, Padova, Italy.

1From now on, the constantsk, k8, k9, k, k8... will be assumed to be
positive.

2Several experimental setup, have been proposed to investigate thex3’’
oscillator with a mass-spring system: e.g., J. Thomchick and J
McKelvey, ‘‘Anharmonic vibrations of an ideal Hooke’s law oscillator,
Am. J. Phys.46, 40–45~1978!; S. Whineray, ‘‘A cube-law air track os
cillator,’’ Eur. J. Phys.12, 90–95~1991!; A. Cromer, ‘‘Thex3 oscillator,’’
Phys. Teach.30, 249–250~1992!; N. C. Bobillo-Ares and J. Fernandez
Nunez, ‘‘Two-dimensional harmonic oscillator on air table,’’ Eur. J. Ph
16, 223–227~1995!.
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3When also the string’s mass cannot be neglected, the maximum rel
correction to the acceleration value~4! is 2ly/Dm, wherel is the linear
density of the wire andy is the distance of each mass from the equilibriu
position the acceleration beinga5@(Dm12ly)g2FA#/@(2L1pR)l
1M#, where L is the string length@C. T. P. Wang, ‘‘The improved
determination of acceleration in the Atwood machine,’’ Am. J. Phys.41,
917–919~1973!#. For large cross-section dipped bodies also the hydro
namic massmh5km2 should be taken into account: this, however, r
quires the calculation of the geometrical factork that depends on the body
shape.

4A detailed analysis of this kind of motion was made by I. R. Gatlan
‘‘Theory of a nonharmonic oscillator,’’ Am. J. Phys.59, 155–158~1991!.

5We therefore disagree with the analysis reported by A. Jafari@‘‘Experi-
mental test ofF52kxnx, ’’ Phys. Teach.34, 196~1996!#, where he claims
that a single cone would produce a purely cubic restoring force.

6The data and graphics reported in this paper were taken with an inte
~model ULI-II! produced by Vernier Software~Portland, OR!, but similar
performances were obtained using an equivalent interface~model 500!
produced by PASCO~Roseville, CA!.

7The ‘‘Rotary motion sensor’’ is available both from Vernier Software a
PASCO. A similar device can be home built using one of the encod
contained in the ‘‘mouse’’ that comes with any PC, as explained by
Ocho and N. F. Kolp, ‘‘The computer mouse as data acquisition in
face,’’ Am. J. Phys.65, 1115–1118~1997!.

8We used an electronic balance with an accuracy of 0.1 g to measure
weight of ten equal metal washers for a total of 11.2 g. Each time one e
massm is displaced from one body to the other, the force changes by
quantityF52mg50.0224 N.

9The cylinder top and bottom have spherical shape in order to reduce
oscillation damping.

10This ‘‘mass trimming’’ is obtained by using small lead spheres~those
normally used to load fishing wires! that were clamped to the wire abov
the counterweight.

11An order of magnitude of the hydrodynamic massmh may be calculated,
following K. Thompson@‘‘Hydrodynamic mass,’’ Am. J. Phys.56, 1043
~1988!#, with the simplified assumption of a long cylinder moving end o
mh5(rw /rb(2r /L)@ ln(L/r)21#m2, whererw and rb are the densities of
water and brass, respectively. In our case we get a mass corre
(mh /M) of about 2%.

12This effect can also be detected by a careful inspection of the plot of
8. The full circles belong alternately to straight lines with different slop
those marked ‘‘OUT’’ are the period values calculated from half-perio
spent ‘‘out of water’’ ~an expected smaller slope! while those marked
‘‘IN’’ are calculated from half-periods ‘‘inside water’’~an expected larger
slope!.

13This can also be detected by a careful eye inspection because the
water surface moves up and down by about 1.3 mm.

14V. F. Weisskopf and H. Bernstein, ‘‘Search for simplicity: Thermal e
pansion,’’ Am. J. Phys.53, 1140–1141~1985!.

15See, for example, C. Hirata and D. Thiessen, ‘‘The period ofF52kxnx
harmonic motion,’’ Phys. Teach.33, 562–564~1995!.

16Available for Macintosh and PC-IBM from Wolfram Research~at low cost
in the Education version for teachers and students!.
MEMORY LOSS

Physics is largely an attitude of mind and I like to think that if I should go to bed tonight and
wake up in the morning to find that I had forgotten everything that I had ever learned, but had
succeeded in retaining such experience as I have in thinking, I should not have suffered very much
by the loss. It would, of course, be a little inconvenient to fail to have ready at hand some of the
formulas and methods which are so familiar to us, but this loss could soon be repaired.

W. F. G. Swann, ‘‘The Teaching of Physics,’’ Am. J. Phys.19~3!, 182–187~1951!.
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