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ABSTRACT 
 
A torsion pendulum oscillating in a vertical plane is presented. The apparatus is designed as a 
mechanical didactical tool for demonstrating the basic nonlinear effects. Some typical experimental 
data are presented including response diagrams and transition to chaos. 
 
1. INTRODUCTION: APPLICABILITY OF THE DIDACTICAL APPARATUS 
 
The main purpose of talking about nonlinear phenomena in school is to gain the students ability for 
distinguishing nonlinear systems from linear ones by qualitative observations of the dynamics. The 
complex and qualitatively different behavior of nonlinear systems should be pointed out as a 
remarkable consequence of non-linearity that very often occurs in natural systems. Formal thinking 
plays an essential role when basic features of a nonlinear system and its dynamics are compared to 
the linear system. A qualitative approach is particularly fruitful for developing the basic idea of the 
phenomena and gaining a deeper understanding of both linear and nonlinear systems. 
 
The simplest example of nonlinear oscillator is the physical pendulum. The torsion pendulum [1, 2, 
3] instead is considered as a didactical example of a nonlinear system that performs all the basic 
features of a dynamical system. According to the equation of motion the torsion pendulum is 
characterized as a Duffing oscillator. The Duffing equation is often numerically solved to analyze 
its dynamics [4, 5]. There are also electric circuits that behave according to the Duffing equation 
[6]: such systems are very precise and easy to analyze but they are difficult to be used for 
developing formal thinking. 
 
Here we describe a version of the torsion pendulum that was designed as a demonstration tool. The 
presented apparatus can be used for demonstrating:   
 

!" the amplitude dependence of the period of oscillation, 
!" the hysteresis phenomena in the response of sinusoidaly driven pendulum and 
!" bifurcation of stable orbits and the transition to chaotic motion.     

 
The basic idea has been initiated and first experiments performed by prof. dr. Giacomo Torzo at 
University of Padua. The theoretical analysis as well as design and construction of improved 
apparatus has been done at Physics Department, University of Ljubljana as BSc thesis [7]. 
 
Our construction is based on theoretical predictions and numerical simulations. The goal was to 
build a mechanical oscillator of large dimensions that would help the observer to recognize and 
understand the phenomena. The main problem was to find the design which will optimize the 
requirements mentioned above. For this reason we have chosen the construction which leaves all 
the free parameters to be varied to some extend.  
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2. DESCRIPTION OF THE APPARATUS 
 

  
 

Fig. 1 Vertical torsion pendulum 

Building parts: 
 

1. Oscillatory rod 
2. Mass 
3. Damping disk 
4. Damping magnet 
5. Steel tape 
6. Driver with adjustable 

eccentric arm  
7. Windscreen wipers motor  
8. Buzzer  
9. Movable bench   
10. Spring for fine adjustment 

of zero angle 
11. The pendulum head 
12. Inertia rod with variable 

moment of inertia 
 

 
The oscillatory part of the pendulum consists of a weighted rod (Fig. 1 – num. 1, num. 2 ) fixed in 
the pendulum head (Fig. 1 – num. 11 ) together with inertia rod with two symmetrically placed 
weights (Fig. 1 – num. 12). The weights can be fixed on different positions enabling the center of 
mass and the moment of inertia to be changed respectively. The pendulum rod can be fixed either in 
the direction upward or downward. In this way two types of nonlinear restoring force can be 
achieved.  
 
The driving mechanism consists of a windscreen wipers motor (Fig. 1 – num. 7) and the rotating 
disc with eccentric driving arm (Fig. 1 – num. 6) which transforms the rotation in approximately 
sinusoidal oscillation. The amplitude of driving oscillation can be varied in the range from 0° to 45° 
by changing the eccentric fixing of the arm.  
 
The excitation is transferred to the oscillatory part of the pendulum through torsional  bending of 
the steel tape (Fig. 1 – num. 5). The driving mechanism and the tape clamp to the driving arm are 
fixed on a movable bench (Fig. 1 – num. 9). This allows using tapes of different length l, enabling 
one to change the tape torsion coefficient which is proportional to l--1.  
 
A viscous damping can be applied by bringing the magnet close to the 4 mm thick aluminum disc  
(Fig. 1 – num. 3, num. 4). 
 
The fine adjustment of the zero equilibrium angle is provided by two symmetrically placed linear 
springs (Fig. 1 – num. 10) attached to the strings that are winded around the pendulum head. Each 
spring is fixed on a screw in the support to allow independent tension adjustment.  
 
The buzzer (Fig. 1 – num. 8) gives a sound signal once per driving cycle. This helps the observer in 
following the phase difference between pendulum and the driving oscillation. The buzzer is 
particularly useful for observing the period doubling transition to chaos. 
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3. MATHEMATICAL MODEL OF THE TORSION PENDULUM 
 
In order to design a pendulum that will satisfy the demonstration requirements one should carefully 
choose the parameters. So let’s take a look at the torsion pendulum model.  
 
If the oscillation of driven torsion pendulum is confined to moderate angles (smaller then say 30°) 
the motion may be accurately modeled by the Duffing equation [8]  
 

)cos(3 tFxxxcx ωβα =+++ &&& ,   (1) 
 
where c is the damping, coefficients α and β  determine the linear and nonlinear part of the restoring 
force and F cos(ωt) is the forcing term.  
 
The sign of the coefficient β  depends on the direction of the restoring force and determines the 
character of the pendulum behavior. In case where the pendulum rod is fixed in downward position 
β  is negative (regular torsion pendulum), while for the rod in the upward position β  is positive 
(inverted torsion pendulum). 
 
The remarkable difference between the two types of torsion pendulum is seen from the form of 
potential energy that determines equilibrium and stable equilibrium angles (Fig. 2). In the case of 
regular torsion pendulum (Fig. 2.a) the potential energy is of the form 
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and in the case of inverted torsion pendulum (Fig. 2.b) 
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2
1
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where k is the torsion coefficient, m is the mass at center of mass distance R and θ is the angle 
between the pendulum rod and a vertical line.  
 
(a) 

 

(b) 

 
 

Fig. 2. Potential energy form in the case of regular torsion pendulum (a) and in the case of 
inverted torsion pendulum (b). 

 
In the case of regular torsion pendulum the only equilibrium is a stable equilibrium at zero angle.  
In the case of inverted torsion pendulum instead we must consider two different situations. If  the 
ratio k/mgR>1 there is only one stable equilibrium at zero angle similarly to the regular case. But  
for k/mgR<1 the zero equilibrium is a labile one. Beside this there are two symmetrically placed 
stable equilibrium angles  
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4. PERIOD DEPENDENCE ON AMPLITUDE AND THE RESPONSE TO SINUSOIDAL 

EXCITATION  
 
When the non-linearity is small the higher harmonics can be neglected and harmonic type of 
oscillation can be assumed. With this assumption we can calculate the period dependence on 
amplitude (Fig. 3) and the response to the sinusoidal excitation (Fig. 5).  
 
To the first order in β  the period dependence on amplitude is given by 
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where ω is the circular frequency.  
 

 

  
Fig. 3.  A schematic ω(A) diagram for free 

Duffing oscillator. The dashed line 
represents the harmonic oscillator. 

Fig. 4.  Measured data for free oscillation of 
the inverted pendulum. 

 
The period variation is particularly evident in the case of inverted pendulum where the period 
increases when the oscillation is damped (Fig. 4).  
 
To calculate the response of the driven pendulum the Duffing iterative method is often used. The 
result can be written in the implicit form  
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with the phase shift φ given by  
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The response diagram shows the hysteresis phenomena. There is a region in the response diagram 
where two physical states of the system are possible. The resulting state depends on the initial 
conditions or on the value of the past driving frequency. When the driving frequency slowly 
increase the amplitude and phase jump occurs from point 1 to point 2 on the diagram but when the 
frequency decrease the jump occur from point 3 to point 4 (Fig. 5). To see the effect one must wait 
for transient oscillations to die out. The assumptions we took for the calculus of the response 
diagram seem realistic as the results (Fig. 6) confirm. 
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Fig. 5.  The hysteresis in the response diagram for 

β<0. The jump occurs from point 1 to 2 
when the driving frequency increases and 
from point 3 to 4 when the frequency 
decreases. The dashed line represents free 
oscillations. With the dotted line we 
marked the non-physical solution. 

Fig. 6.  Measured data confirm the hysteresis in 
the response diagram. Here is an example 
of inverted torsion pendulum (β>0). 

 
5. THE TRANSITION TO CHAOS FOR INVERTED TORSION PENDULUM  
 
The complexity of the response increases with non-linearity. This is especially evident in the case of 
double potential energy well. The labile equilibrium at zero angle brings into the system the weak 
causality thus onsets the system for the chaotic motion. For some combinations of system 
parameters α, β, c, F, ω there is no periodicity and no evident order in the response oscillation. 
Choosing the parameters α and β which are determined by the pendulum dimensions one can 
change the damping c, the driving amplitude F or the driving frequency ω to enter the chaotic 
region. However, the transition to the chaotic region is gradual. Bifurcations of stable orbits follow 
the Feigenbaum scenario of period doubling finally reaching the chaotic motion.    
 
With this didactical apparatus it is possible to vary any of the system parameters in order to achieve 
clear transition to chaos [4]. In our case the frequency can be easy adjusted by varying the voltage 
on the driving motor. We have chosen to enter the chaotic region by slowly decreasing the driving 
frequency. At relatively high frequencies the response repeats after one driving cycle (Fig. 7) what 
is usually called a one-period motion. If the frequency is gradually decreased one-period motion 
trajectory becomes unstable. The motion in phase diagram is now attracted to two different 
intersecting stable orbits. After one driving cycle the motion reaches the point of intersection and 
changes the orbit. In this case the response repeats after two driving cycles thus called a two-period 
motion (Fig. 8). The similar bifurcation phenomena with period doubling from two-period to four-
period motion (Fig. 9) occurs when the frequency is further decreased. The driving frequency 
intervals from one doubling to another are geometrically decreasing and finally lead to the chaotic 
response (Fig. 10). 

  
Fig. 7. Measured data: one-period motion  

(driving frequency ν=0,83 Hz). 
Fig. 8. Measured data: two-period motion 

(driving frequency ν=0,63 Hz). 
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Fig. 9. Measured data: four-period motion 

(driving frequency ν=0,56 Hz). 
Fig. 10. Measured data: chaotic motion 

(driving frequency ν=0,47 Hz). 
 
6. CONCLUSIONS 
 
Experiments with the apparatus evidently confirm the theoretical predictions. The prototype can be 
used for developing an efficient didactical tool. The large dimensions result in slow and evident 
transients, easy observing the phase shift and the instability of periodic orbits in the transition to 
chaotic motion, thus making possible to gain a quality insight into the physical phenomena. With 
large dimensions the phenomena is fascinating, especially in the case of chaotic motion. However, 
too slow demonstrations are not efficient in classical lessons. For a faster performance, better suited 
to classroom demonstrations, the dimensions should be appropriately reduced. 
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