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ABSTRACT

A torsion pendulum oscillating in a vertical plane is presented. The apparatus is designed as a
mechanical didactical tool for demonstrating the basic nonlinear effects. Some typical experimental
data are presented including response diagrams and transition to chaos.

1. INTRODUCTION: APPLICABILITY OF THE DIDACTICAL APPARATUS

The main purpose of talking about nonlinear phenomena in school is to gain the students ability for
distinguishing nonlinear systems from linear ones by qualitative observations of the dynamics. The
complex and qualitatively different behavior of nonlinear systems should be pointed out as a
remarkable consequence of non-linearity that very often occurs in natural systems. Formal thinking
plays an essential role when basic features of a nonlinear system and its dynamics are compared to
the linear system. A qualitative approach is particularly fruitful for developing the basic idea of the
phenomena and gaining a deeper understanding of both linear and nonlinear-systems.

The simplest example of nonlinear oscillator is the physical pendulum. The torsion pendulum [1, 2,
3] instead is considered as a didactical example of a nonlinear system that performs all the basic
features of a dynamical system. According to the equation of motion the torsion pendulum is
characterized as a Duffing oscillator. The Duffing equation is often numerically solved to analyze
its dynamics [4, 5]. There are also electric circuits that behave according to the Duffing equation
[6]: such systems are very precise and easy to analyze but they are difficult to be used for
developing formal thinking.

Here we describe a version of the torsion pendulum that was designed as a demonstration tool. The
presented apparatus can be used for demonstrating:

o the amplitude dependence of the period of oscillation,
o the hysteresis phenomena in the response of sinusoidaly driven pendulum and
o bifurcation of stable orbits and the transition to chaotic motion.

The basic idea has been initiated and first experiments performed by prof. dr. Giacomo Torzo at
University of Padua. The theoretical analysis as well as design and construction of improved
apparatus has been done at Physics Department, University of Ljubljana as BSc thesis [7].

Our construction is based on theoretical predictions and numerical simulations. The goal was to
build a mechanical oscillator of large dimensions that would help the observer to recognize and
understand the phenomena. The main problem was to find the design which will optimize the
requirements mentioned above. For this reason we have chosen the construction which leaves all
the free parameters to be varied to some extend.



2. DESCRIPTION OF THE APPARATUS

Building parts:

Oscillatory rod

Mass

Damping disk

Damping magnet

Steel tape

Driver with adjustable

eccentric arm

Windscreen wipers motor

Buzzer

Movable bench

0. Spring for fine adjustment
of zero angle

11. The pendulum head

12. Inertia rod with variable

moment of inertia
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Fig. 1 Vertical torsion pendulum

The oscillatory part of the pendulum consists of a weighted rod (Fig. 1 — num. 1, num. 2 ) fixed in
the pendulum head (Fig. 1 — num. 11 ) together with inertia rod with two symmetrically placed
weights (Fig. 1 — num. 12). The weights can be fixed on different positions enabling the center of
mass and the moment of inertia to be changed respectively. The pendulum rod can be fixed either in
the direction upward or downward. In this way two types of nonlinear restoring force can be
achieved.

The driving mechanism consists of a windscreen wipers motor (Fig. 1 — num. 7) and the rotating
disc with eccentric driving arm (Fig. 1 — num. 6) which transforms the rotation in approximately
sinusoidal oscillation. The amplitude of driving oscillation can be varied in the range from 0° to 45°
by changing the eccentric fixing of the arm.

The excitation is transferred to the oscillatory part of the pendulum through torsional bending of
the steel tape (Fig. 1 — num. 5). The driving mechanism and the tape clamp to the driving arm are
fixed on a movable bench (Fig. 1 — num. 9). This allows using tapes of different length I, enabling
one to change the tape torsion coefficient which is proportional to I

A viscous damping can be applied by bringing the magnet close to the 4 mm thick aluminum disc
(Fig. 1 — num. 3, num. 4).

The fine adjustment of the zero equilibrium angle is provided by two symmetrically placed linear
springs (Fig. 1 — num. 10) attached to the strings that are winded around the pendulum head. Each
spring is fixed on a screw in the support to allow independent tension adjustment.

The buzzer (Fig. 1 — num. 8) gives a sound signal once per driving cycle. This helps the observer in
following the phase difference between pendulum and the driving oscillation. The buzzer is
particularly useful for observing the period doubling transition to chaos.



3. MATHEMATICAL MODEL OF THE TORSION PENDULUM

In order to desgn a pendulum that will satisfy the demondration requirements one should carefully
choose the parameters. So let’ s take alook at the torsion pendulum model.

If the oscillation of driven torson pendulum is confined to moderate angles (smdler then say 30°)
the motion may be accurately modeled by the Duffing equation [8]

X +cx+ax+ bx® = F coswt) , ()

where c is the damping, @efficents a and b determine the linear and nonlinear part of the restoring
force and F_cos(wt) is the forcing term.

The dgn of the coefficient b depends on the direction of the restoring force and determines the
charecter of the pendulum behavior. In case where the pendulum rod is fixed in downward postion
b is negative (regular torson pendulum), while for the rod in the upward podtion b is pogtive
(inverted torson pendulum).

The remarkable difference between the two types of tordon pendulum is seen from the form of

potential energy that determines equilibrium and sable equilibrium angles (Fig. 2). In the case of
regular torson pendulum (Fig. 2.8) the potentia energy is of theform

U (@ =3 ka - mgReosq ®
and in the case of inverted torson pendulum (Fig. 2.b)
1,

U(a) = 3 kg® + mgReosq, €)

where Kk is the tordon coefficient, m is the mass a center of mass disance R and q is the agle
between the pendulum rod and a verticd line,
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Fig. 2. Potential energy form in the case of regular torsion pendulum (a) and in the case of
inverted torsion pendulum (b).

In the case of regular tordon pendulum the only equilibrium is a gable equilibrium & zero angle.
In the case of inverted torson pendulum indead we must condder two different Stuations. If  the
ratio k/mgR>1 there is only one stable equilibrium a zero angle smilarly to the regular case. But
for k/mgR<1 the zero equilibrium is a labile one. Besde this there are two symmetricaly placed
gable equilibrium angles
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4. PERIOD DEPENDENCE ON AMPLITUDE AND THE RESPONSE TO SINUSOIDAL
EXCITATION

When the non-linearity is smal the higher harmonics can be neglected and harmonic type of

oscillation can be assumed. With this assumption we can caculate the period dependence on

amplitude (Fig. 3) and the response to the snusoidal excitation (Fig:5)-

Tothefirst order in b the period dependence on amplitudeisgiven by

B
W =a + . bA?, (5)
where w isthe circular frequency.
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Fig. 3. A schematic W(A) diagram for free Fig. 4. Measured datafor free oscillation of
Duffing oscillator. The dashed line the inverted pendulum

represents the harmonic oscillator.

The period varidion is particularly evident in the case of inverted pendulum where the period
increases when the oscillation is damped (Fig. 4).

To cdculate the response of the driven pendulum the Duffing iterative method is often used. The
result can be written in the implicit form

z 2
e V]
F? =ga- w?)A+ §bA3a + AW A? (6)
é 4 0
with the phase shift f given by
cw

f= .
ten a- W’ +3/4bA? ()

The response diagram shows the hysteresis phenomena. There is a region in the response diagram
where two phydcd dates of the sysem ae possble The resulting state depends on the initid
conditions or on the vaue of the past driving frequency. When the driving frequency dowly
increase the amplitude and phase jump occurs from point 1 to point 2 on the diagram but when the
frequency decrease the jump occur from point 3 to point 4 (Fig. 5). To see the effect one must wait
for trandent oscillations to die out. The assumptions we took for the cadculus of the response
diagram seem redlidtic as the results (Fig. 6) confirm.
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Fig. 5. The hysteresisin the response diagram for Fig. 6. Measured data confirm the hysteresisin
b<0. The jump occurs from point 1 to 2 the response diagram. Hereis an example
when the driving frequency increases and of inverted torsion pendulum (b>0).

from point 3 to 4 when the frequency
decreases. The dashed line represents free
oscillations. With the dotted line we
marked the non-physical solution.

5. THE TRANSITION TO CHAOS FOR INVERTED TORSION PENDULUM

The complexity of the response increases with-nortlinearity. This is especidly evident in the case of
double potential energy well. The labile equilibrium a zero angle brings into the sysem the wesk
causdity thus onsets the system for the chaotic motion. For some combinations of system
parameters a, b, c, F, w there is no periodicity and no evident order in-the response oscillation.
Choosing the parameters a and b which are determined by the pendulum dimensions one can
change the damping c, the driving amplitude F or the driving frequency w to enter the chaotic
region. However, the trangtion to the chaotic region is gradud. Bifurcations of dable orbits follow
the Feigenbaum scenario of period doubling findly reaching the chaotic motion.

With this didactical gpparatus it is possble to vary any of the system parameters in order to achieve
clear trandtion to chaos [4]. In our case the frequency can be easy adjused by varying the voltage
on the driving motor. We have chosen to enter the chaotic region by dowly decreasng the driving
frequency. At reatively high frequencies the response repeets after one driving cycle (Fig. 7) what
is usudly cdled a one-period motion. If the frequency is gradudly decreased one-period motion
trgectory becomes ungtable The motion in phase diagram is now attracted to two different
intersecting stable orbits. After one driving cycle the motion reaches the point of intersection and
changes the orhit. In this case the response repeets after two driving cycles thus cdled a two-period
motion (Fig. 8). The amilar bifurcation phenomena with period doubling from two-period to four-
period motion (Fig. 9) occurs when the frequency is further decreased. The driving frequency
intervas from one doubling to another are geometricadly decreasing and findly lead to the chaotic
response (Fig. 10).
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Fig. 7.Measured data: one-period motion Fig. 8. Measured data: two-period motion
(driving frequency n=0,83 Hz). (driving frequency n=0,63 Hz).
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Fig. 9. Measured data: four-period maotion Fig. 10-Measured.data: chaotic motion
(driving frequency n=0,56 Hz). (driving frequency n=0,47 Hz).

6. CONCLUSIONS

Experiments with the gpparatus evidently confirm the theoretical predictions. The prototype can be
used for developing an efficient didactical tool. The large dimensions result in dow and evident
trangents, easy observing the phase shift and the ingtability of periodic orbits in the trangition to
chaotic mation, thus making possble to gain aquality ingght into the physca phenomena. With
large dimensions the phenomena is fascineting, especialy in the case of chaotic motion. However,
too dow demondirations are not efficient in classical lessons. For a faster performance, better suited
to classroom demondtrations; the dimensions should be appropriately reduced.
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