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The idea behind this article was inspired by
a previously published TPT note on har-

monic and anharmonic oscillators,1 in which the
oscillations of a bar on a cube were briefly dis-
cussed.  We thought these oscillations deserved
quantitative experimental investigation and that
automated data acquisition could allow the data
to be gathered.

We decided to start the investigation by
studying the motion of a real seesaw and exploit-
ing the modern technologies available nowadays.
The data-acquisition system we used is a graph-
ing calculator (TI-89 or TI-92) connected to
CBL and to a motion detector.  We chose this
system because of its portability, which allows
measurements to be easily performed in real-life
contexts.  Many systems available on the market,
however, can be used for the purposes of this in-
vestigation.

Studying a Real Seesaw

A simple seesaw can be made in a school
gymnasium using a ladder on a flat balance
beam (see Fig. 1).  Students are first invited to

Physics of the Seesaw

observe its motion unloaded in order to detect
special features or regularities.  They can then
observe what happens if two of them are sitting
at the ends of the ladder and compare the mo-
tion of the system in the two different situations.
They will easily find out that in both cases, the
time between successive oscillations decreases
with time, and that the time in the case of the
loaded seesaw is longer than that of the unloaded
one.

Using the data-acquisition system connected
to a motion sensor placed under one end of the
ladder, it is easy to collect position-versus-time
data. The plot can be projected on the wall and
compared with direct observations.  The graph
appears very much like that for harmonic mo-
tion, but this impression soon fades when the ve-
locity and the acceleration are plotted versus
time.  It is easy to recognize that the motion is
due to an approximately constant torque (lead-
ing to a constant angular acceleration) that
changes its sign each time the ladder passes
through its equilibrium position.

Students can also be invited to investigate
what happens when some parameters are
changed (for example, the total weight at each
end) by looking at how the plots change under
different conditions.

Studying the Seesaw in the Lab

Moving to the laboratory we can study the
system under more controlled conditions.  We
investigate its motion by varying the basic pa-
rameters that can influence the time of one oscil-
lation and checking the theoretical model with
experimental data.  One effect that had not beenFig. 1. Students on the seesaw.
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explored in the gymnasium is the influence of
the shape of the pivot.  This can be done in the
laboratory by substituting the block with a cylin-
der.  Therefore we will study two cases: the
square pivot and the round pivot.

We developed a theoretical model that can
account for the observed features of the motion
that will allow us to make quantitative predic-
tions to be checked on a small-scale seesaw in the
school laboratory.  To keep this note short, we
shall only sketch the path leading to the model.  

The unloaded seesaw on a square pivot

We here assume that the oscillation ampli-
tude � is small and that the pivot width d is
much smaller than the bar length L (see Fig. 2).
The equation of motion is I d�/dt = �, where � is
the torque, I the moment of inertia, and � the
angular velocity.  The torque is provided by a
component of the gravitational force F applied
to the bar center F = mg cos� � mg (for small �
values), so that the restoring torque2 is � �
–(d/2) mg sign(�).  The moment of inertia may
be written I = (1/12)mL2 + m(d/2)2 =
(m/3)(L/2)2 (1+3d 2/L2) � mL2/12, for d<<L.
Then the angular acceleration is � = �/I �
(mgd/2)/ (mL2/12) = 6gd/L2 and the magnitude
of the linear acceleration of the bar end is a �
(d�/dt)L/2 = 3gd/L.  The vertical component of
the linear acceleration at small angles is az =
acos� � 3gd/L, which is constant.  We may
therefore predict for the oscillation period:

T �  4 �2�A�/a�z� = 4 �2�L�/3�gd� �A�,   (1)

where A is the vertical amplitude.
In the lab we used a small-scale seesaw made

of an aluminum bar of L = 80 cm and a metal
block that provides two pivot edges separated by
d = 4 cm, which satisfies our assumption of d<<L
within 5%.  Figure 3 shows the data of the posi-
tion, velocity, and acceleration versus time, as
they appear on the screen of the graphing calcu-
lator. 

By plotting the time of each oscillation versus
�A� (see Fig. 4), we obtain T = (4.7 ± 0.3) �A�,

Fig. 2. Setup for seesaw with square pivot.

Fig. 3. Plots of position (x1), velocity (v2), and
acceleration (a3) versus time t for square pivot.
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which agrees well with the dependence T = 4.66
�A� calculated from Eq. (1).

By repeating the same procedure with a thin-
ner pivot (d = 2 cm), we obtain a plot where the
best fit line is T = (6.7 ± 0.3) �A�, in agreement
with the prediction T = 6.6 �A� provided by
Eq. (1).

It is interesting to notice that Eq. (1) does
not contain the mass m: our model therefore
predicts that the period should not depend on
the bar mass but only on its length.  Such a pre-
diction may be easily confirmed by simply plac-
ing a second identical bar over the previous one
and recording the oscillations: we obtain exactly
the same behavior. 

What happens when we sit on the see-
saw?

From observations of students on the seesaw,
we have noted that mass-loading the seesaw does
affect its motion; that is, heavier students pro-
duce a slower motion.  When a mass M>>m/2 is
added to each bar end, the torque becomes � =
F(d/2) = (d/2)(m + 2M)gcos� � Mdg, and the
moment of inertia changes into I = m/3 (L/2)2

(1 + 3d 2/L2) + M(L/2 + d/2)2 + M(L/2 – d/2)2 =
{(m/3)(1 + 3d2/L2) + 2M(1 + d2/L2)}(L/2)2 �
ML2/2.  Therefore, the vertical component of
the acceleration of the bar-end is az � (Mgd)/
(ML2/2)(L/2) = gd/L and the period may now be
written as:

T � 4 �2�A�/a�z� = 4 �2�L�/g�d� �A�.             (2)

We can check the dependence of the period
from �A� in the case of a bar of mass m = 250 g
loaded with two masses M = 730 g at the ends.
The magnitude of the slope of the best fitting
line is 12 ± 1, in fair agreement with the value
11.4 calculated  from Eq. (2).

The case of the round pivot

Using the same bar on a round pivot (e.g., a
metal tube with a radius of a few centimeters
clamped to a table — see Fig. 5), we may study
the effect of changing the pivot shape.  A simple
model tells us that it will produce substantial ef-
fects on the features of the motion.

If R is the radius of the cylindrical pivot, the
displacement of the contact point is x = R�, and
therefore the torque is � = xmgcos� � –R�mg,
and the moment of inertia is I(x) = (m/12)L2 +
mx2 � mL2/12.  Here we have assumed that � is
small and x<<L.  The angular acceleration be-
comes  

� = �/I0 = –(R�mg)/(mL2/12) = –(12gR/L2)�.

This equation is the same as that of a pendulum
with effective length � =L2/(12R) [at small am-
plitudes � = –(g/�)�]; therefore, the oscillation
is harmonic with period 

Fig. 4. Plot of period versus square root of ampli-
tude (unloaded seesaw with d = 4 cm).

Fig. 5.  Setup for seesaw with round pivot.
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T = 2��(L�2/�1�2�gR�)� = �L/�(3�gR�)� (3)

Therefore changing from square to round pivot
turns an anharmonic oscillation into a harmon-
ic one.

Figure 6 shows the data of the position and
velocity versus time obtained with an aluminum
bar of L = 80 cm and a pivot of R = 10 cm.  The
experimental data provides a value for the period
T = (1.47 ± 0.01)s, which agrees well with the
value T = 1.46 s predicted by Eq. (3).  An analy-
sis of the motion of the bar on a round pivot
loaded by suitable masses (M>>2m) leads to a
predicted period which is �3� times larger than
for the unloaded bar:

T = �L/�(g�R�)�.                                 (4)

A Side Issue on Damping

It can be observed that the damping increases
as the diameter of the square pivot is increased,

keeping all other conditions the same (see Fig.
7).  As a limit case we can think of keeping the
bar with one end on the floor and letting it fall
down (d = L).  Notice that in general damping is
smaller for the round pivot seesaw than for the
square pivot one.

We can try to explain this by looking to the
motion of the center of mass in more detail.  Plot-
ting the vertical coordinate zG of the center of
mass versus time, we get a series of parabolas,
similar to those describing the motion of a
bouncing ball.  But unlike the ball, most of the
kinetic energy of the system is rotational and on-
ly a small fraction is translational.  This fraction
is proportional to the square of the velocity vG of
the center of mass when the bar passes through
its equilibrium position vG

2 = 6zGg (d/L)2.  We
can assume that only the translational kinetic en-
ergy is dissipated whereas the rotational kinetic
energy is conserved, and is responsible for mak-
ing the other end of the bar raise up.  The energy
loss takes place in fact via vibrations excited by
impact of the bar against the pivot.  Therefore,
given that for a specific value of � zG is also pro-

Fig. 6. Plots of position (x1) and velocity (v2) for round
pivot.

Fig. 7. Comparison between damping with two d values
(1 and 4 cm) for the square pivot.
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2. In the following we simplify the notation by dis-
carding the sign of torque and angular accelera-
tion. (We only consider their absolute value.)
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portional to d, the dissipated energy will be pro-
portional to d 3.  This can account for the no-
ticeable dependence of damping upon the dis-
tance between fulcrums.

Here we have assumed that damping due to
air friction can be neglected.  This is not the case
with the round pivot seesaw: in the absence of
collisions of the bar with the pivot (assuming a
perfectly round pivot, plane bar, and both rigid),
damping can only be caused by air resistance and
rolling friction.  The fact that the damping in-
creases with amplitude (and therefore with the
velocity of the bar) indicates that the effect of air
resistance is not negligible.

Comments

Looking at science textbooks, one gets the
impression that oscillatory motions are mostly
harmonic.  This is not the case in reality.  Real
systems may show anharmonic features because
of the presence of a constant gravitational field
that is responsible for a restoring force of posi-
tion.1 In some cases a position dependence arises
from the geometry of the system (as in the pen-
dulum and in the seesaw on a round pivot), but
in these cases the dependence can be approxi-
mated as linear only for small oscillations.

Recording of data over an extended period is
especially important in investigating oscillatory
motions.  The automated data-acquisition sys-
tem allows the recording of a large amount of ex-
perimental data that can be quantitatively ana-
lyzed later, even outside the laboratory, when the
phenomenon is no longer available for observa-
tion.

Investigations that start from the study of
phenomena in a nonsterilized context illustrate
to the students that the conceptual tools devel-
oped in physics are special “ways of looking” at
the phenomena around us, and not merely a se-
ries of abstract relations, so distant from every-
day experience, as they often appear in physics
textbooks.
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