Harmonic and anharmonic oscillations investigated by using
a microcomputer-based Atwood’s machine
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We describe how the Atwood’s machine, interfaced to a personal computer through a rotary
encoder, is suited for investigating harmonic and anharmonic oscillations, exploiting the buoyancy
force acting on a body immersed in water. We report experimental studies of oscillators produced
by driving forces of the typ& = —kx" with n=1,2,3, andF = —k sgn§). Finally we suggest how

this apparatus can be used for showing to the students a macroscopic model of interatomic forces.
© 1999 American Association of Physics Teachers.

[. INTRODUCTION features of the motion of an oscillating cylinder for small
amplitudes F=—kx) in Sec. Il A and for large amplitudes
Simple Harmonic Motion(SHM) is usually studied in in- (F=—Kk sgnx) in Sec. Il B; in Sec. Il C we study the case of
troductory physics courses because it involves easy mathan oscillating triangle F = — kx—k’x2) and in Sec. Il D the
ematics and because two simple experiments may be used @sse of an oscillating cond=& — kx+k’x>—k”x%). In Sec.
examples: the pendulum and the spring-mass system. Expefit we describe the experimental setup and in Sec. IV the
mental studies are often based only on measurements of tigocedure used to characterize the system. In Sec. V we re-
period from which the dynamic parameters of the system argort the data obtained for the different types of oscillations,
derived. we compare the predictions provided by the models with the
However, in real systems the linear behavior, implicit in experimental results, and we exploit the discrepancies to re-
SHM, is rarely obeyed: most oscillators are only approxi-fine the models. Conclusions are drawn in Sec. VI and a
mately harmonidin the small-amplitude limjtwhile some calculation of the period versus amplitude for various restor-
interesting features may only be explained if anharmonicitying forces is reported in the Appendix.
is taken into accounte.g., the expansion coefficient and the
specific heat of solids, jumping phenomena, transition to
chaos,.). ,
To investigate anharmonic oscillations we may study the“' OSCILLATIONS WITH THE ATWOOD'S
pendulum where the restoring force ks= —mg sin®: by MACHINE

retaining the first two terms of the series expansiondsin The Atwood’s machine is a device where two masses hang
=0—0Y6+---; we get F=~-mg(®—®%6)=—«®  from the ends of a string passing over a pulley that can freely
+ k' D3, rotate on its horizontal axis.

A particular feature of the pendulum is that the restoring In the apparatus used in this study one of the two masses
force mimics that of a spring thatoftensat larger ampli-  (m, with volumeV,) dips into a water batkFig. 1).
tudes. Real springs, on the contrary, beccstiéer at larger The motion of the whole system can be simply described
amplitudes, the restoring force beilfg= —kx—k’x%. Both  py the motion of the mass,: here we use an orthogonal
in the pendulum and in the mass-spring system the ratigeference frame with a downward directed vertical axis.
between the cubic and the linear term cannot be freely var- |f we assume a massless and inextensible string, the linear
ied: it is constant '/ k= —3) in one case, while it depends acceleratiora of the massn, may be calculated by equating
on the mechanical properties of the spring material in thehe torque7 applied to the pulley to the rate of change of its

otherf . ~angular momentund(l w)/dt:
A simple way to explore both harmonic and anharmonic .
oscillations, with a free and easy choice of the system anhar- -7 = R(7—7)=d(lw)/dt, @)

monicity, is to use a modified Atwood’s machine, where onéyhere. 7= R(r,— r,) is the net driving torque in the absence
of the two masses hanging from the pulley drops into a watepy friction, R is the pulley’s radius) is the momentum of

bath. . . , . inertia, andr; andr, are the tensions applied to the string by
The essential feature of this setup is that, since, massesn; andm,, respectively

Archimedes force is a functlon of the immersed body vol- The pulley's angular momentum i&=1lw, where
ume, the behavior of the restoring for€éx) can be changed . . .
= wR relates the linear velocity of m, to the pulley’s an-

by modifying the body shape. gular velocityw (in the absence of wire slipping

Oulsntthlz Spg‘fpreersl’;?igegg:; s 5? n;ﬁ ngx t?nirrlnmgg tToliExOht/k:r:agb\Llj?)”- Each one of the string’s tensions is related to the accelera-
yp 9 ' P 9 Yion a and to the other forces applied to each body, by the

ancy effect. , .
The physical model of this modified Atwood’s machine is Newton’s law.

described in Sec. Il; we derive from the model the main 7;=my(a+g) and 7,=my(g—a)—Fa(h), (2
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LTS S Fig. 2. The displacement versus time plot for an oscill&er —k sgn).

Fig. 1. Schematic of the Atwood’s machine.

wherek= 7r?pg, showing that we are dealing with a simple
where Fa(h) is the Archimedes force that, being propor- harmonic motion whose period is

tional to the volume of the displaced water, is a function of

Relations(2) may be used to eliminate, and 7, from Eq.  In other words, as the cylinder rises above its equilibrium
1), point, the Archimedes force decreases because a smaller wa-
— ter volume is displaced. This increases the downward force
— — — — + —_ [}
R(7z= ) =RI(My=My)g=(m+ my)a—Fa(h)J/dt and causes the cylinder to fall. If it drops below its equilib-
=la/R, 3 rium point, the Archimedes force increases because a greater
ivin volume is displaced; this causes the upward force to increase
gving and the cylinder to rise.
Am g—Fa(h) This description of the motion is valid as long as the os-
a=m- 4 cillation amplitude does not exceed an upper limit above

which the cylinder is completely immersed or completely out
If Am=m,—m, is less tharpV, (wherep is the water den- of the water.

sity), the Archimedes force balances the gravity foAoa g

for some valuehy of the immersed heighh: F4(hg) o ,

=Am g, and for any displacement from the equilibrium po- B. Oscillations due to a constant restoring force:

sition therestoring force Facting on the system is the op- F =~k sgnX

posite of the change of the buoyancy for&& ,=Fx(h) If the oscillation amplitude is made very larg&#1,
—Am g. In fact, when the body dipgositive displacement  \yhere is the cylinder length the cylinder spends most of

the buoyancy force increasé., its change is positivend  the time completely outside or completely inside the water
the restoring force is directed upwalice., is negative in the  path, and in each case the restoring forceaisstant In fact,

chosen reference frameF = —AF . o the restoring force when the whole cylinder is outside water
If we define.Z=m,;+m,+1/R? as thetotal inertial mass js Am g and when the whole cylinder is inside water is
of the systerfi the acceleration may be written as Am g—FA(l)=Am d (ho—1)/ho].
a=—AF,l. /. (5) If we want to obtain a motion that is symmetric around the

. _ .. equilibrium point, we must lehy=1/2. In this case, if we
If we want to take into account the effect of dissipative neglect the short transient during which the cylinder is par-
forces, we may add to the driving torqie=R(7,—71) &  tally immersed, the absolute value of the forgél/2)r2pg

friction torque Ti=*R Fg, where withFe we define an  _ A g remains constant while its sign changes when the
effectivefriction force (directed opposite tor;) applied to  cyjinder crosses the water surface:

m,. In this case the accelerati@i of m, may be written as

L F=—ksgnX), )
a'=axFelZ, 6 o

F_ o ®) ~ wherek=#/(l/r)r?pg and the acceleration is

where thex sign depends on the direction of the velocity, , 5

which may be the same as or opposite to that of the accel- a=*kl.z=*m(l/2)r°pgl. 7. (10
eration. In this type of oscillatiof the period is directly proportional

to the square root of the amplitude as may be easily seen
by inspecting Fig. 2. TheX(t) graph is made, in fact, of

When the bodym, is a cylinder of radiusr, the parabolic branchesX=at?/2), and within each branch the
Archimedes force is=a(h)=mr?hpg, and its change\F,  relation between the bagt and the heigh# is described by
may be written as a function of the displacem&rth—hy,  the equatioPA=a At?/2. The period is therefore
from the equilibrium position: AFA(X) = 7r2pg(ho+ X)
—ar?hopg=mr2pgX.

This system is equivalent to the well-known mass-spring
system, the “elastic constant” being determined by the cyl-C. Oscillations of twin triangles: F = —k|X|X
inder radiusr and by the liquid density.

From relation(5) we obtain the cylinder acceleration:

A. Harmonic oscillations of a cylinder: F=—kX

T=4At=4\2Ala=8\. 7I(=r%pg)JA. (12)

If we use, instead of a body wittonstant cross sectig
body whose cross section changes linearly, the buoyancy
a=—(kI.Z)X, (7) forces increases quadratically with depth.
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Fig. 3. Schematics of the body shaped as twin triangles.

Electro-1
magnet

Suppose our body is a slab in the shape of twin triangles
attached at their vertex and that the counterweight is chosen
to keep the twin triangles in equilibriutalf-submergedn
the water bath.

When the twin triangles are displaced by a lenjtfrom A cubic restoring force, as shown in the Appendix, pro-
equilibrium, the change in the displaced water volume mayjuces oscillations whose period varies with amplitude as
be written byAV(X)=sb(X)X/2=sB|X|(tana)X, whereB

Fig. 4. Block diagram of the experimental setup.

is the triangle basesthe thicknessg the aperture angle, and T=7.42). 71 ¢lA. (17)
sh(X)=2s(tana)|X| the cross section at the distan¢drom  As for the case of real twin triangles, also for real twin cones,
the vertex(Fig. 3). one has to account for the finite cross section at the joint of

We are here assuming0)=0, i.e., a zero cross section at the cones. If is the radius at the joint, the fact¥? in (15)
the twin triangles’ vertex, so that the restoring forEe= and (16) becomeq 3(r o /tan a)®X+3(ry/tan a) X2+ X3], pro-

—AFA(X)=—pgAV(X) becomes ducing an asymmetric force:
F=—k|X|X=— kX2 sgr(X), (12) F=—¢3(ro/tan a)®X+3(ro/tan ) X+ X3],  (15)
and the acceleration, from relati¢B): a=—(&.7)[3(rq/tan @)?X+3(rq/tan a) X2+ X3].

(16')
The asymmetry, however, is small due to the fact that
<r. On the contrary, when the oscillation occurs around an
Squilibrium position with the cone vertaxell belowthe wa-
ter surface(e.g., Xo=h/2, whereh is the cone heightthe

restoring force turns out to k&ronglyasymmetric. This be-
T=6.87/. 7l kI A. (14  comes important if we use single cone€ with amplitudes

If the triangles’ vertex, in equilibrium, is placed at a distanceX=Xo, where the restoring force is
Xo from the water surface, the restoring force becomes  F=— ¢ (X—X,)3+X3]=— & 3XZX+3X X2+ X7].

a=—AFA(X)|. 2= —(kl %)

where x=s tan apg.

A simple calculation, reported in the Appendix, proves
that a quadratic restoring force produces oscillations whos
period varies with amplitude as

X|X, (13

asymmetric. It may be written adF,= [ (X—Xp)|(X (18)
— Xo) |+ XolXo|1, assumingX,>0 for vertex below the free
surface at equilibriumjand X,<<0 above. lll. DATA ACQUISITION SETUP

Actually a real body shaped as twin triangles cannot have

a zero cross section at the midpofb(0)=b,: see Fig. 3 The data acquisition system we used is based Seraal

and therefore, even in the case of symmetric behavigy ( Interfacé connecting the host computéenther a Macintosh
. ) . or a PQ to a position sensor. The interface and the computer

=0), a linear term (<bo_/tana)x in the restoring force can- communicate by the standard serial lifRS-232. The

not be completely avoided. logged data can be displayed on the computer monitor in
various graphical representations using the dedicated soft-
ware, which also allows one to perform numerical fits and

D. Oscillations of twin cones:F = —kX? other data handling. A real-time visualization of the kine-

matic variables can thus be obtained.

: ; , : The position sensor_is made of an optical encoder, at-

radiusr and aperturer), the Archimedes’ force has a cubic ;e to the pulley shafthat measures the pulley’s rotation

dependence on the displacemant 7 . .

\F/)\/ith a proper choice%f the counterweight, the twin conesangleﬁ(t) fr-om which one gets the linear displacemat)
may be set in equilibrium with their vertex at the water sur—Of(;_he ganglng masses ¥s=Rd (once known as the pulley
face X,=0). In this case a simple calculation of the dis- radiusR).

placed water volume shows that the restoring force and the T_h_e software calculate_s from the measured vaIu_es of the
acceleration become, respectively, position the corresponding values of the velociift)

s =dX(t)/dt and of the acceleratioa(t) =dv(t)/dt.
F=-&Xo, (15 A cheap and solid stand is provided by an aluminum tube
(1 in. diam, 1.5 m longand a vise clamped to the border of

If the twin triangles are replaced by twin con@ath base

=— (&)X . . : .
a (&)X, (16) a table(Fig. 4). The tube is held vertically by screwing two
where &= 7r(tan a)?pg/3. metal blocks, with vertical V grooves, to the vise lips.
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Fig. 5. Applied forceF versus measured acceleratiann the classic At- Time (ioec.,n“)
wood’s experiment. The best fit straight line gives both the friction force and
the total inertial mass. Fig. 6. Plots of position, velocity, and acceleration versus time for the cyl-

inder oscillating inside and outside water.

V. EXPERIMENTAL INVESTIGATION OF
HARMONIC AND ANHARMONIC OSCILLATIONS
IN WATER

The pulley is a metal disk(3 mm thick, radiusR
=50 mm) with a thin groove to keep the stririg dacron
fishing wire~0.3 mm diam\ =0.125 g/m), and it is coaxi-
ally fixed to the rotary sensor.

The masses; andm, are brass bodies, attached to eac
end of the string by means of a screw with a thin axial hole Figure 6 shows the plots of position, velocity, and accel-
(the string can pass through the hole but a string knot igration versus time, obtained with a brass cylindeeight
blocked. In order to avoid unwanted lateral oscillations m,=143.6 g, diameter 15 mm and height about 100)fim
when the motion is started, a small electromagnet can be ¢ counterweightrf, =135.0 g) was chosen so that in
used to block and release the counterweight(a cylinder  equilibrium the cylinder is half immerséd.in this system
that bears an iron screw at its bottom _ the motion is expected to obey the predictions of the models

We used a perspex ves$2D0 cm height and 10 cm diam  gescribed in Secs. 11 Aat small amplitudgand 11 B (at large
in order to make visible the whole, path, but it may well  amplituds.
be replaced by cheapéglass or metalvessels. After some oscillations, when the cylinder does not com-
pletely exit from water(for t>45s), the motion becomes
damped harmonicas clearly shown by the same plots ex-
panded in Fig. 7.

The whole motion of the cylinder may be represented by
two models:anharmonicoscillation prevailing in the initial
phase (<45 s) andharmonicoscillation in the final phase

WA The case of the cylinder

IV. SYSTEM CHARACTERIZATION (THE CLASSIC
ATWOOD’S MACHINE )

Before performing the experimental study of the various
type of oscillations, one needs to characterize the system b();>45 s).

measuring the pulley’s momentum of inertiand the effec- In plots like those shown in Figs. 6 or 7, one can use the
tive friction force Fp . mouse to move a vertical linécorresponding to the same

The easiest way to measure botiR? and Fr is to per- value of the variablé) along all the plots, thus detecting the

form a set of measurements of the acceleration where bo%alues of all the other variables. In this way one can easily

masses move in air. In this casB=0) relation (6) be- measure the time yaluet$ when the ac_celeraﬂon changes
COmes sigh (X=0). The differencest;—t;_,, give the values of

the half-periodsT;/2. In the same way one can measure the
values of the maximum and minimum displacemeXis
which give the amplitudé, .

a’'=(Am g—Fp)/(I/R?>+m;+m,) or

Am g=Fg+a'. 7. (19
That is, if the sum of the two massem{+m,) is kept

constant, a plot of different values of the driving force o o4

0 T T

Am g=(my,—m,)g versus the measured values of the accel- Eoow NN L N e N
eration has slopel (R?+m;+m,)=./ and intercepFe . & ool ; ; ; .

This experiment may be easily performed by moving aset ., o2 . . , .
of extra masses of known weight from one body to the other. 7 oL N e

An example of such a plot, obtained using two equal bod- & 0Tk 7o s e
ies of mass 118.3 g and ten extra masses of 1.12 g (sach 2 02 ; ; )
thatm, +m,=247.8 g)® is shown in Fig. 5. -~ 03r : 1 g

The experimental data show a linear behavior, thus con- 3§ ¢aof A N i SO
firming thatF can be assumed to be constant. The best fit < oz AV AR
gives Fe~(5+1)x10*N and a slope.#=(0.347 ° % % 5 5 = 0
+0.003) kg. Therefore theffective inertial massf the pul- Time (aecends)
ley is I/R?=_7— (m;+m,)=(0.099+0.003) kg. Fig. 7. An expanded plot of the data of Fig.armonic motioh
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VA (m12) cylinder in the harmonic phase of the motion. The linear fit is made on the

selected data.

Fig. 8. Period of the cylinder oscillations as a function of the square root of

amplitude. Full dots: first phase of the motion. Open dots: second phase

(harmonic motioh ter) may be obtained as the slope of a linear fit of the velocity
versus the time plofFig. 9a)]. We obtain as average abso-

In Fia. 8 th | fth iod funci tJute value of the positive and of the negative slomes
N Fg. © we report the vaiues ot the perlod as a function o =(0.227+0.002) m/$, to be compared with the value pre-

(ﬁe- e ful dot corresponc tov;her‘:!lrSttEhase of ihe MoloNgicted by relation(10) a= (0.223+0.002) m/3. Also, here

g fin€ 1S aiso drawnwhile the open dots Cor- .o argrg hars do barely overlap, owing to the excess mass
respond to the second phasghe expected valueT o ine \water film, neglected in relaticil0), that is respon-
=2m\.7lmpgr<=2.93s of the harmonic motion is gjple for the larger observed mean acceleration.

shown). o Looking in more detail at the(t) plot, which at first sight

The plot shows that the period is constant for small valuegooks |ike a triangular wave, we discover that the slope is
of the amplitudeA, i.e., when the cylinder ipartially im-  gjigntly different in the first half and in the second half of
mersed(for A<6.cm), and increases linearly witiA at  each “quasilinear” portion of the plot. When the cylinder is
larger amplitudes. The slope predicted by relatidd): T  inside water, the acceleration is larger when the cylinder is
=4.\2la\JA=4\2.7IAm gJA is 12.0:0.2 (assuming an dipping into the watefFig. 9b): a= —0.248+0.001 m/]
uncertainty 6 3 g on.# and of 0.1 g onAm), while the and smaller when it is rising back toward the water surface
value obtained by fitting the experimental datalisver [Fig. 9(c): a=—0.209+0.001 m/$].

(11.7+0.1 s m¥?). These two values are compatitféae The same happens when the cylinder is outside the water:
error bars do slightly overlaput one may still suspect that here the acceleration is slightly larger when the cylinder is
some second-order effect was neglected. rising toward the top position and smaller when it is falling

A reduction of the measured slope with respect to the preback toward the water surface.
dicted one cannot be explained by considering effects such The observed discontinuitiesa in the acceleration are
as hydrodynamic maSs(extra inertial mass due to the water systematic and larger than the experimental uncertainties.
displaced by the moving cylindebecause it should increase This feature reminds one of the behavior of a cart riding
the measured slope with respect to the predicted one. Thegpward and downward on an incline, and it can indeed be
discrepancy may be explained by a small increaag 0.2 ¢ justified by taking into account friction.
of the mass differencAm=8.6 g. The oscillating cylinder During the selected portion of motion in Figt® the pul-
in fact, after being dipped into the water, remains wetted byey rotates clockwise, while during the motion selected in
a water layett? and one may even see one water drop fallingFig. 9(c) it rotates counterclockwise, and therefore the fric-
just after it leaves the surface. tion force has the same direction of the acceleration in the
A direct measurement of the acceleration of the bodyfirst case and the opposite one in the second case. We there-
(when it is completely inside or completely outside the wa-fore obtain the friction force for the cylinder underwater as
Fe=.7(Aal2)=(7+1)x10 3 N. When the cylinder is in
air we obtainF=(4+1)x10 2 N, in agreement with the

g T y=0513 - 0227 * (1 - 0.550) value obtained from the plot of Fig. 5, within the experimen-
< L e, tal uncertainties.
g . . . .
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Fig. 9. Cylinder velocity plots(a) the selected area refers to motion under-
water;(b) the selected area refers to downward moti@hthe selected area Fig. 11. Plots of position, velocity, and acceleration versus time, and accel-
refers to upward motion. eration versus position for the twin triangles.
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Fig. 12. Frequency of the twin triangles’ oscillations as a function of the Fig- 14. Frequency of the twin cones’ oscillations as a function of the

square root of amplitude. Full line: purely quadratic restoring force. Dotted@MPplitude. Full line: a purely cubic restoring force. Dotted line num3er|ca|

line: numerical integration of the law of motion. integration of the law of motion for the forceAF,(X)=4[X
+3(ro/tan a)X+3(ry /tan a)>X?].

A larger frictional force for the cylinder underwater is
consistent with the extra dissipation due to the water viscosyersus the square root of the amplitud®, since we expect,

ity. _ ) . _ from Eg. (13) a linear behavior foff (yA), with a slope of
Turning to the harmonic phase of the motion, Ef).gives 0.73 Hz/im (full line).

a pred|c2:t|on of the S'?‘?‘ of the curvea(X): p=—k/.7 A qualitative agreement with the predicted behavior is
=mpgrel.7z=—4.57s" In Fig. 10 we report a fit of the shown indeed by the experimental results at larger ampli-
central part of the ploa(X) (that for X<6 cm) that gives a  tudes; at smaller amplitudes, however, a clear departure from
slightly larger slope: 8= (—4.66+0.05) s the x? oscillator model is apparent.

This discrepancy may be explained by releasing an im- A much better fit is obtained by taking into account also
plicit assumption that we made in our simple model. If wethe Jinear term due to the finite thickneds,& 2 mm) of the
consider that the vessel has a relatively small inner radiugyin triangles at their vertex: the dotted curve in Fig. 12
(R=5cm), we may suspect that thertical shift of the wa-  represents the values of the frequency calculated, for each

ter level due to the volume of the water displaced by theamplitude, by numerically integrating relatiqA3), as ex-
cylinder immersion cannot be neglected. If we take into acplained in the Appendix.

count this effect? by replacing the variablX with the vari-

able X' =X[1+r?/(R>-r?)]=1.02%, the expected slope

changes intg8= —4.67 s 2, in excellent agreement with the C. The case of the twin cones
measured value.

A record of the motion of a twin cones-shaped bdtiyo
brass cones, screwed together at their vertex, base radius
=1.5cm, heighth=10 cm, m,=494 g, counterweighin,

Figure 11 shows the plots of position, velocity, and accel-=461 g, radius at jointr;=0.125cm, tanx=0.1375) is
eration versus time, and acceleration versus position obshown in Fig. 13.
tained with brass twin trianglegvith s=1 cm, hy=10 cm, In the graphs we measured the values of the period and of
b=4.8 cm, by=0.2 cm, m;=384.8 g,m,=408.9 g), using the amplitude, and then we plotted the frequency versus the
a short vessel with a large inner diamet80 cm to make amplitude, as we expect the behavior predicted by(E6):
gﬁ)gs“?r:kt)getﬁgevx\//:tglr?al shift of the water level when the body f=0.135/2]. ZA=0.135/(tan a)%pgl (3. //)A. (20)

Measuring the period and the amplitude, as we did for thén Fig. 14 we have drawn the straight line representing the
cylinder oscillations, we obtain for the twin triangles the dataexpected behavior for a pureubic restoring force(a full
shown in Fig. 12, where we plotted tHeequency =1/T  line with slope 1.88 Hz/m). The dotted curve represents

the numerical integration of the law of motideee the Ap-
pendiX that assumes a restoring force which includes also

B. The case of the twin triangles

_ oo o 015 the linear and thequadratic term predicted by Eq(15'):
g0 ﬁ R N E o005 nn ;"i S F(X)=— & X3+ 3(ro/tan a)X+3(rp/tan @)?X?], wherer, is
£ 0 oo fHfH A Vi\\"* 2 o U ¥ Uf\uﬁu the radius of the cross section of the twin cones vertex.
'§—0.06V.V.v V Mo §-0.10J VT
& -0.10 g =0.15
0 S5 10 15 20 25 30 35 40 0 S5 10 15 20 25 3D 35 40
Time (seconds) Time (seconds)
0.2 0.3 3
—~ -~ 0.2 . 5 0w P=—E 33X ZH+3X X7
0 0.1 ﬁ o e g . \
£ oo A AVA £ oo (§=200, X,=0.0%
E ¥ g -0.1 X \
: =01 V V V . . . . : 0.2 ‘\ 205
-0.2 -0.3 X, ©
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Time {seconds} Positien {m}

R e s
Fig. 13. Plots of position, velocity, and acceleration versus time, and accel-
eration versus position for the twin cones. Fig. 15. Behavior of the expected restoring force for a single cone.
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0.08 : . , : VI. CONCLUSIONS

The experimental results reported in this paper show that a
oozl \/ e ~ : . MBL version of the Atwood’s machine is a simple and pow-
: : : erful device for investigating various kind of motions.
1 In particular, it can be used to introduce the students to the
] study of harmonic and anharmonic oscillations, the required
] physics background being restricted to elementary mechan-
s ics.
At the introductory level, the study of nonlinear oscillators
] appears to be important in order to provide the students with
] examples of asymmetric restoring forces that are necessary
to model the real behavior of solids, e.g., the nonzero ther-
L . . s s mal expansion coefficient.
004 7003 002 -0.01 BB tion (my ~ 0% 004 005 008 The apparatus described here combines efficiently the ad-
vantages of the Atwood’s machine and those of the MBL
Fig. 16. Plot of position(a) and restoring forcéb) vs time for the single ~ acquisition system. The Atwood’'s machine is suitable for
cone. Plot of force versus positido): the dotted line represents the fitting  introductory level investigations because the basic features
function F = — [ (X~ X) 3+ X3]. of the system influencing the motion of the bodies can be
easily identified(and modified by the students themselves.
The data acquisition system can be a powerful cognitive tool
by allowing a real time visualization of the relevant variables
selected by the students according to any particular model
D. The case of a single cone: a macroscopic model of the they wish to test, and by encouraging the students to play the
atomic vibration in solids game of gradually refining the schematization in order to
reach a satisfactory agreement with experimental data. The
The analysis made in Sec. Il D shows that for a singledata accuracy that can be achieved with MBL is such to
cone of height, in equilibrium at half heightX,~h/2), the ~ make the refinements possible and testable, as shown in the

restoring force becomes AF,= — & (X—Xg)3+X3], with ~ Present paper.

—Xo<X<X,, and &= m(tan a)?pg/3. The geometry of this

system, with the expected shape of the restoring force is
shown in Fig. 15. APPENDIX: THE CALCULATED DEPENDENCE OF

Comparing this system to the well-known mass-springPERIOD FROM AMPLITUDE

system, we note here that tlspring stiffnesss no longer . . . .
4 ispring g A simple dimensional argument that yields the correct de-

constant: it increases fof>0 and decreases f®<0. In the . . : -
: endence of the periodl from the amplitudeA in a generic

real world these kinds of forces are much more commonthan ~ .. ~.. . . n

gscillation driven by a restoring force of the type= —kx

one might suppose at first sight. The cohesive force in solids . : )
is the simplest example. Short-range repulsithe “hard is the following. The period may depend only on the quan

> . ) . - tities
sphere interaction” due to the Pauli exclusion principlar-
ies with displacementwith respect to the equilibrium posi- m (kg), k[N/m"=kgm"s7?, A (m).
tion of the atompmuch faster than long range attractithe  The only combinations of these quantities with the dimen-
van der Waals interaction due to polarizajionherefore the sions of time, for different values of, are ym/k for n=1

atoms’ vibration in a crystal lattice is more closely approxi- ——~ _ TV _ .
mated by the motion of a cone-shaped body floating in a m/kAfor n=2 andym/kA” for n=3. Therefore the period

liquid bath than by the usual mass-spring system. In factMust beproportional to Jm/k, Vm/k/\/A, and Jm/k/A, re-

- Spectively.
only theasymmetnof the restoring forcéand of the related . . . .
potential curvé may explain the positive thermal expansion The proportionality constant must obviously be derived by

ey : : S a different method?®
coefficient:” a symmetric restoring force would give instead o _
) L The change in kinetic energ&E [betweenv=0 for x
zerothermal expansion coefficient.

If we unscrew the twin cones and change the counter-_ X0’ and th? generio(x) for x<A] equals the W.0rk done
weight in order to keep in equilibriurthalf immersed one by the restoring force, and therefore we may write
single cone, the recorded oscillation is indeed asymmetric 1 x
[Fig. 16a)]. The restoring force may calculated from the 5 M ()= [ F(x)dx. (A1)

measured acceleration &{t)=.#a(t), knowing that the . . o ) ] )
inertial mass is now 0.544 kg. The calculated val(iEs. By solving this equation with respect to the velocity, we get

16(b)] of the variableF(t) may be plotted versus the corre- x F(X) dx
sponding values of the variab¥(t) [Fig. 16(c)]. In this plot, v(X)== Zf — dx= P or
the slope corresponds to the elastic constant in the mass- X M t
spring system, and it is here larger 60 than forX>0. dx
In the same plot the dashed line represents the values of the dt= > .
function F = — £[ (X—Xo) 3+ X3], calculated with the nomi- + \/_ f F(x)dx
nal valuesé= 200 N/n? and X,=0.05 m. m Jxo

1Y
)
)

Force {N)

Force {N)

(A2)
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The integral in the last equation from the time of maximum 3When also the string’s mass cannot be neglected, the maximum relative
displacemenb(o:A) to the time when the system isin equi- correction to the acceleration valg®) is 2xy/Am, where\ is the linear

o - . - density of the wire ang is the distance of each mass from the equilibrium
librium (x=0) gives the valud/4, and therefore the period position the acceleration being=[(Am-+2\y)g—F A J/[(2L+ 7R\

Tis +.7], wherelL is the string lengt/C. T. P. Wang, “The improved
0 dx determination of acceleration in the Atwoc_;d machin_e,” Am. J. Phis.
T:4f (A3) 917-919(1973)]. For large cross-section dipped bodies also the hydrody-
A 2 rx namic massm,=km, should be taken into account: this, however, re-
_ _ f F(x)dx quires the calculation of the geometrical fackdhat depends on the body
mJa shape.

4A detailed analysis of this kind of motion was made by I. R. Gatland,
(the minus sign in the last equation is due to the fact that “Theory of a nonharmonic oscillator,” Am. J. Phy59, 155—158(1997).
when the body approaches equilibrium its velocity is nega-*wWe therefore disagree with the analysis reported by A. Jgf&kperi-
tive). We may use this equation to calculate the period of an mental test oF = —kx"x,” Phys. Teach34, 196(1996], where he claims

oscillation due to a restoring force of the kind= — kx" that a single cone would produce a purely cubic restoring force.
' 5The data and graphics reported in this paper were taken with an interface

0 dx (model ULI-Il) produced by Vernier Softwar@ortland, OR, but similar
T:4J performances were obtained using an equivalent interfexedel 500
A /2 X produced by PASCQ@Roseville, CA.
— — J (—kxMdx "The “Rotary motion sensor” is available both from Vernier Software and
mJa PASCO. A similar device can be home built using one of the encoders
contained in the “mouse” that comes with any PC, as explained by O.
m (o dx Ocho and N. F. Kolp, “The computer mouse as data acquisition inter-
=2 \/ 2— f e A4 face,” Am. J. Phys65, 1115-11181997.
k Ja \/f}f\x“dx (A4) 8We used an electronic balance with an accuracy of 0.1 g to measure the

. . weight of ten equal metal washers for a total of 11.2 g. Each time one extra
The case of SHM 1f=1) may be integrated analytically, massmis displaced from one body to the other, the force changes by the

leading to the known resul=27ym/k, and for the restor-  quantityF=2mg=0.0224 N.

| X 9 : ' .
ing force F= —k sgnX we find T=4\/M\/K. 'gg;lgil;nr?gga?gir?;d bottom have spherical shape in order to reduce the

In the case of the_ twin trlangles_wéz_) and t_Wln COI’](?S. This “mass trimming” is obtained by using small lead sphefd®ose
(n=3) we may use instead numerical integration, obtaining normally used to load fishing wirg¢hat were clamped to the wire above
T=6.87ym/k/JA, and T=7.42/m/k/A, respectively. We _the counterweight.
used the function “Nintegrate” within the standard An order of magnitude of the hydrodynamic masgs may be calculated,
“ MATHEMATICA " software packagé? following K. Thompson[*“Hydrodynamic mass,” Am. J. Phys56, 1043

. . . . (1988], with the simplified assumption of a long cylinder moving end on:
Numen(_:al integration may be easlly performed also Wh_en M= (pu/py(20/L)[IN(LIY)— 1]y, wherep,, and py are the densities of
the restoring force has a polynomial form as for real twin \yater and brass, respectively. In our case we get a mass correction
triangles and twin cones, which cannot have a zero cross(m,/. ) of about 2%.
section at the vertex. 2This effect can also be detected by a careful inspection of the plot of Fig.

8. The full circles belong alternately to straight lines with different slopes:

3Also at Istituto di Chimica e Tecnologie Inorganiche e Materiali Avanzati those marked “OUT" are the period values calculated from half-periods

(ICTIMA—Consiglio Nazionale delle RicerchePadova, Italy. spent “out of water” (an expected smaller slopevhile those marked
1From now on, the constants k’, k”, «, «'... will be assumed to be “IN" are calculated from half-periods “inside water'(an expected larger
positive. slope.

2Several experimental setup, have been proposed to investigatexthe “ BThis can also be detected by a careful eye inspection because the free
oscillator with a mass-spring system: e.g., J. Thomchick and J. P. water surface moves up and down by about 1.3 mm.
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MEMORY LOSS

Physics is largely an attitude of mind and | like to think that if | should go to bed tonight and
wake up in the morning to find that | had forgotten everything that | had ever learned, but had
succeeded in retaining such experience as | have in thinking, | should not have suffered very much
by the loss. It would, of course, be a little inconvenient to fail to have ready at hand some of the
formulas and methods which are so familiar to us, but this loss could soon be repaired.

W. F. G. Swann, “The Teaching of Physics,” Am. J. Ph{§(3), 182-187(1951).
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