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Foreword

Understanding Integrated-Circuit (IC) electronics is a “brain-tool” that is becoming important in
a growing number of scientific studies. However the student frequently feels the first approach to
this discipline as a shock. Several textbooks in fact require that the reader invest a great effort
before the benefit/cost ratio becomes favorable.

For example often the textbook starts with a difficult and discouraging introduction on
transistors. The transistor is indeed the basic element in any IC, but learning its working principle
is not necessary for learning IC.

In the modern analog electronic circuits, on the other hand, the basic building block is now the
Operational Amplifier (OA), not the transistor. And understanding the AO is much easier than
understanding the transistor.

Therefore here we start describing the AO and its most important applications, leaving a
simplified description of diodes and transistors behavior in an optional Appendix (because in
some special circuit the transistor must be used by itself).

The goal of this book is to help the first steps of the students (mainly those whose main interest is
not electronics) to acquire familiarity with the essential elements of analog electronics, making
possible the understanding of many practical circuits.

Algebra is the only mathematical tool strictly required: an elementary knowledge of derivative
and integral is enough. Reading the short resume of the complex number properties and of the
Laplace transform, in Appendix, should make faster the analysis of the circuits treated in the
chapter devoted to filters.

This first English edition of the book is mostly a translation from the original Italian version
(published by Decibel-Zanichelli Eds., 1991), with some updates.

This book collects ideas selected from many sources and suggestions of many authors, so that the
complete list of people to which I am indebted would be extremely long; but I cannot omit to
acknowledge the main help received by Lorenzo Bruschi, and the useful proof-reading made by
Giorgio Delfitto.

GIACOMO TORZO

Padova, august 2012
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How to use this book

This book might be used as theoretical guide to understand various applications of integrated
circuits, but it was written as practical guide.

The first chapter is a mere collection of definitions and rules that will be frequently used

Chapters 2,3 offer a short introduction to the basic OA circuits, and the reader should try
experimenting some simple exercises suggested in chapter 16 before proceeding to next chapters.

Next chapters (4-13) give examples grouped by functions: amplifiers (4), voltage sources (5)
current sources (6), non-linear circuits (7), filters (8), comparators and pulsers (9), oscillators
(10), lock-in (11), digital circuits (12) and timers, IC voltage regulators and analog switches (13).
For all these circuits some suggestions for experimental tests are given in chapters 16.

At this point the reader may feel confident to try setting up interfacing circuits for transducers or
sensors, thus exiting from the pure “electronic-world” and entering the wider world of “physics-
laboratory”: chapter 14 offer several examples of simple interfacing circuitry for some physical
quantities: temperature, pressure, position, light.

Chapter 15 is devoted to discuss a topic (OA with positive and negative feedback), which is
rarely treated in most handbooks, without involving too complex math notations.

Chapter 16 suggests some practical exercises with the circuits described in the previous chapters,
giving in most cases only suitable values for the passive elements and sometimes also some hints
for performing elementary measurements. The choice of collecting all exercises in a single
section avoids distracting the readers with practical details that are not required for understanding
the circuit’s working principles.

Appendix A gives a very simple treatment of the transistor and Appendix B is a concise
collection of math tools, that are frequently used in the rest of the book, and that are briefly
explained for the less expert reader. Appendix C and D give details on the commercially available
passive and active components, useful for practical purposes.

Sometimes references to data available in the Web are suggested, mostly to Wikipedia.



1. Introduction
This short chapter is devoted to those who never studied electronic circuits, and it may be skipped
by anyone who yet knows what is a network made of current and voltage sources, resistor,

capacitors and inductances!.

1.1. Voltage and current signals

Any physical quantity may be used to transfer information, i.e. as a signal. A signal may be either
analogic or digital. In the first case one has a smooth change of the physical quantity, in the time-
domain, in the second case the quantity may take only discrete values (usually two): e.g. ZERO
value (also named NOT, or OFF, or LOW), and ONE value (YES, or ON, or HIGH).

In electronics two signal are taken into consideration: voltage (V) and current (I).

Voltage (unit: volt=V) is a measurement of the electric potential difference between two points in
a circuit; current (unit: ampere=A) is a measurement of the charge carriers flux per time unit
from one point of a circuit to another one.

The charge carriers (unit g=Coulomb) are conventionally assumed to be positive, moving from
point at higher potential to points at lower potential. In the real world they may be either positive

(holes in semiconductors) or negative (electrons in metals and semiconductors)

1.2. Resistors, capacitors, inductances, signal sources

Resistors are bipolar passive elements, made of conductors connecting two points (A and B) in a
circuit. The voltage Vap at the resistor’s ends (=potential difference between Va and V) and
the current I flowing across the resistor are bound by a linear relation (the Ohm’s Law) Vaop=RI,
where R is a positive constant, that measure the electrical resistance (unit: ohm, symbol Q). The
resistance of a homogeneous cylindrical conductor is given, in terms of the material resistivity p
by the equation R =pl//S, where / is the conductor length and S the cross-section.

A finite electrical resistance is associated to any conductor; but the copper wires connecting
various elements in a circuit, due to the low copper resistivity, are normally assumed to have zero
resistance.

Capacitors are bipolar passive elements, made of two electrodes separated by a dielectric layer;
the voltage V. across the capacitor’s ends obeys the equation V=q/C, where q is the charge?

accumulated at the electrodes and C is a constant named capacity (unit: farad= F).

For a more detailed introduction: Electricity by A. Shure, or Electronic Circuits and Applications by S. Senturia
eand B.Wedlock (Chapt. 2); se also http://en.wikipedia.org/wiki/Network analysis %28electrical circuits%29
The charge q has opposite sign and equal values on the two electrodes. Capacitors may be of different types: see
app C.3.




The wires connecting various elements in a circuit may also be seen as electrodes separated by
dielectric medium (air), so that they form capacitors distributed in the whole circuit. But the small
value of these parasitic capacitances makes them negligible in most cases. The current 1=0q/ot

flowing from one electrode to the other one, may be written I=CoV /ot.

Inductors are bipolar passive elements, made of a conductor wound into a coil; the voltage
V1 across the inductor’s ends is proportional to the flowing current: Vi =Lol/ot. The constant L
is the inductance (unit: henry =H)?, which measures the efficacy of the inductor in changing the
linked magnetic field when a current flows across it.

The symbols representing resistors, capacitors and inductors are given in figure 1.1. Details on

different types of these elements are reported in Appendix C.

o—_—+—-o o— o o— o
R C L
O—AAA— O O H o o— (0 o
Figure 1.1

An ideal voltage source is an active bipolar device, generating a potential difference between its
two poles (VA =V, also named electromotive force), which does not depend on the current
flowing across it. A real voltage source (constant: battery, or variable: oscillator, pulser, electrical

noise ...) always includes an electric resistance R;, named internal resistance of the source:
VaB=Vo—Rjl. Similarly, an ideal current source is an active bipolar device, generating a current

which does not depend on the voltage across its terminals.

1.3. Linearity, superposition, Kirchhoff’s Laws

A network is said to be linear if in each branch a linear relation* holds between voltage and
current. Ideal resistors, capacitors and inductors are linear elements.

Any linear network obeys the superposition principle’. This principle states that the net response
at a given place and time caused by two or more sources is the sum of the responses which would
have been caused by each source individually (i.e. by switching off all the other sources, which
means replacing all other voltage sources by a short circuit, and all other current sources by an

open circuit).

3 The physical meaning of inductance may be deduced from Faraday’s Law which states that the electromotive
force (EMF) induced into any closed circuit is equal to the time rate of change of the magnetic flux through the
circuit. (see http://en.wikipedia.org/wiki/Faraday%27s_law_of induction) A wuseful mechanical analogy is
obtained by substituting the electric current with speed, the induced EMF with inertial force, and the inductance
with mass.

4 A function f is linear if for any two inputs x; and X, f(x;+ X5) = f(x;) + {(x2).

5 See http://en.wikipedia.org/wiki/Superposition_principle




The following rules hold, named Kirchhoff’s Laws in any linear network:

1) the algebraic sum of all voltages in any single loop (or mesh)® is zero;

2) the algebraic sum of all currents entering a single node is zero.

The first Law is named Kirchhoff Voltage Law (KVL), the second one Kirchhoff Current Law
(KCL). Using these rules and the Ohm’s Law, solving any linear system becomes quite easy: e.g.
becomes immediate calculating the equivalence of various combinations of resistors, capacitors

and inductors (see figure 1.2).

Figure 1.2
Two resistors Ry, R [or inductors’ Ly, L] placed in series are equivalent to a single resistor Rqq
[or inductor L¢,] whose value is the sum of the two values Req=R;+Ry [Leq=L;+L]. The
resistor Req [or Legl, equivalent to two resistors Ry, Ry [or Ly, Lp] in parallel, is
Req R1[[R2)=RiRy/(Ry+Ry) [or Leg=L;Ly/(Ly+Ly)] & The symbol || is frequently used to
indicate the parallel combination of two elements.

Two capacitors placed in parallel are equivalent to a single capacitor whose

V.
value is the sum of the two values C.y(C[[Cy)=C;+C,, while two ! i

R;

capacitors C;, C, in series are equivalent to a single capacitor whose value
, }:—o V,
is Coq=C1C,/(C+Cy). 0

. C R
A frequent calculation is the subdivision of a voltage by means of two 2
resistors in series as shown in figure 1.3. This simple circuit, where the I

Figure 1.3

6 A node is a point of the network that join two or more branches, a mesh is a closed loop that starting from a node

returns to the same node without crossing a brach more than one time.

Here we assume inductors with negligible mutual inductance.

These relations hold only if the inductors do not interact, i.e. if the mutual inductance M is negligible; this occurs
when the magnetic field linked with one inductor in not linked to the other inductor. Otherwise one must account
for M, as in the case of primary and secondary windings in a transformer.



voltages are referred to the common ground, is named resistive divider. The same current I flows
through the two branches R and R,. The Ohm’s Law gives: V;=I(R; +R,) and V,=IR,.
By eliminating I from the previous equations, one gets for the output voltage:

Vo=ViR,/(R;+Ry)=BV;, where B is named partition fraction of the input signal V;.



2. Operational amplifiers

A large part of modern electronic circuits is made of Integrated Circuits (IC), which are
composed by many microelements, both active (as transistors) or passive (as resistors, capacitors,
inductors...). Among the linear IC most part are operational amplifiers (OA).

Understanding the working principle of OA is possible without entering into the details of their
internal structure. They may be considered as black boxes, i.e. as objects completely
characterized by their functional properties, or by the relations they establish between input and

output signals.

2.1. Basic concepts and definitions

The Operational Amplifier® (AO) is an integrated circuit, made of resistors, capacitors, diodes
and transistors encapsulated into a single small container!?, plastic or metallic, which is normally

connected to the rest of circuitry through spring-loaded contacts (Figure 2.1).

LT

Can DIP

o I e [ s N o |
g 0 a0 d

Figure 2.1
The OA may be functionally defined as differential amplifier, i.e. an active device with three
ports'l, generating, at the output port, a voltage proportional to the difference between the
voltages entering the two input ports. All these voltages are referred to the common potential,
named ground potential.
The ratio between the output voltage and the input potential difference is named open loop

differential gain Ay4. The value of Ay for d.c. or low frequency signals (f <f,~100Hz) is very
high (A4=105).

9 The name Operational Amplifier was invented by people who dealt with analogic electronic calculators, (see e.g.
http://en.wikipedia.org/wiki/Analog_computers These calculators, now superseded by digital calculators, used
OA in order to process voltage signals executing operations as sum, subtraction, multiplication, division,
integration etc.. A simple example is here given in chapt 8.4.

10 The pinout is generally circular in the metal can models and Dual-In-line Package (DIP) in the plastic models.
More details in Appendix D2.

11" Some rare models offer also offer also differential output.




The graphic symbol commonly used for indicating OA is shown in figure 2.2. Here V, and V,
are the input voltages and V,, is the output voltage, while the symbols (-) and (+) indicate the

inverting and non-inverting inputs (or channels), respectively.

The power supply ports (named V_ and V_ ) in figure 2.2

+Vee
are frequently omitted in simplified drawings. The voltages v O
supplied to these ports have usually equal values with i Vo
opposite sign (from £5V to £20V) in dual power supply, or V29—
typically V.. =3V =30V and V,, = 0V in unipolar power i Ve
supply. In the following, where there is no different Figure 2.2

specification, the default power supply is dual.

The OA amplifies the difference Vy=V,—V, between input voltages only when the device
operates in the /inear region, that is limited by very small values of [V,—V,|. This is due to the
finite values of both open loop differential gain and of power supply voltages.

For larger values of [V;| the OA saturates, which means that its output voltage reaches the limit
values V.. or V__, for V,>V, or V,<V/, respectively.

The open loop differential gain A, is the result of superposition of the two channel gains. The
signal fed to the inverting input appears at the output amplified by a factor (- A™) and added to the

signal fed to the non-inverting input (which is amplified by a factor A™). As a result we get:

Vo =—A"V,;+A"V, [2.1]
The absolute value of the gain in the two channels is very similar but not identical, so that

normally the open loop differential gain is given as their mean value:

A=4(|A0

+\A‘\). [2.2]

The absolute value of the difference between the two absolute values is named common-mode

gain:

el

) A-m [2.3]

It is easy to guess that always A <<Ay.

The difference between the two input signals is named differential signal (note that while the

input signals are referred to common ground potential, the differential signal is a floating signal):

Vy = \/2—\71 [2.4]

And their mean value is named common-mode signal (referred to ground potential):



Vem=3(V2+V)). [2.5]

From the above definitions follows that the input signals may be written in terms of differential

signal and common-mode signals:

Vi=V,.-+V, and V,=V_,+3V, . [2.6]
The output signal V  may therefore be written in terms of V4, V., Ajand A
Vy,=A"V,-AV, =A, V +AV,. [2.7]

The ratio, measured in decibel (dB), between Ay and A, is named Common-Mode Rejection
Ratio (CMRR). Typical value for CMRR is 100 dB.

CMRR =20 log;, (Aq/ Agp)- [2.8]
Another important parameter that describes the behavior of real OA is V ¢ (input offset voltage),
i.e. the voltage required across the OA input terminals to drive the output voltage to zero.
Vs 1s normally small (of the order of millivolt), and many OA provide also pins used to zero this
offset (offset null pins). The value of V , depends on temperature
and on power supply: the sensitivity to such parameters is
measured as 0V i/0T (V. temperature coefficient), typically
some pV/K, and as PSRR (Power Supply Rejection
Ratio = 0V ./ 0V ) of the order of 100 dB.
The maximum swing of the output voltage V, in linear regime,
has normally'? a value smaller than the power supply value: Figure 2.3
typically V..+2V =V, = V. -2V.
Figure 2.3 shows an example of dual power supply with negative V. In this figure the V ¢ value
was exaggerated in order to make it visible. The linear region is defined as the maximum swing
of differential input voltage that does not bring the output into saturation.
The input bias current I, may be neglected in a first approximation, being small with respect to
other currents normally flowing within the circuit. The OA have high input impedance'3

(Z,,=106+1011 Q) and small output impedance (Z,,,=1+100 Q). The input impedance Zi, is the

out

ratio between the input voltage and the current injected into the input. The output impedance Zqyyt

may be seen as the internal resistance of the controlled-voltage-source Vi=A4 (V4) driven by the

12 1n some OA (named RAIL to RAIL) the output voltage swing cover the full power supply range .
13 More in details, the input impedances Z, ,of single input terminals differs from the differential input impedance
Zg usually Z;, >10° Qand Zy = 10°Z, .



input differential voltage V4 (see Figure 2.4).

2.2. The Ideal Operational Amplifier

The model of ideal operational amplifier, used in simplified analysis, is defined by the following

approximations for a voltage-controlled voltage source:
Vi

Ad = a0
V=0
Ly =Ty =0 v
Zin —o
Zyy=0
CMRR = Q0 ° v
BandWidth = o

Figure 2.4

By using the approximate model of Ideal Operational Amplifier one may reach a faster
understanding of complex circuits involving OA. Taking into account the non-ideal
characteristics of real OA may later refine the analysis.

At first sight the model of ideal OA might appear useless within the linear region, because any
finite differential input voltage V4 would produce saturation for Ag=c. We will however see in
the next chapter that, by using some negative feedback (that reduces the differential input

voltage), the OA may be always kept within the linear region.

2.3. Real Operational Amplifiers

The following table 1.1 gives a summary of the typical values of essential parameters for
different types of commercial OA: input stage made by bipolar junction transistors (BJT) or by

field effect transistors (FET) or by metal oxide transistors (MOS).

The parameter l,s (input offset current) is the difference between the two input currents:

Input stage Vos Iy Los CMRR 1
(mV) (pA) (pA) (dB) (MHz)
Bipolar 0.01+2 ~100.000 ~10.000 ~90 1+2
FET 0.5+5 5+30 0.5+5 =90 1+5
MOS 0.1+0.5 1 0.5 90-+110 1+2
Table 1.1

Ios=|Tp1|—|Ip2 |. Normally I is smaller than I, by an order of magnitude: (Ios/1,~0.1).
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The open loop differential gain Ay will be simply written

A from now on.
---- 20LoglA |

It is a complex function of the signal frequency f:

A=A(w), (where w=2xf is the angular frequency and
j= \/——1 is the imaginary unit!4), that resembles the transfer

function of a low-pass filter!’>: A(jw)=Ay(1+Hw/wy) L

) 20 Log | A(w)

In a plot of log|A(w)| versus log(w), the function [A(w)|

may be approximated by a piecewise linear function; in )
Figure 2.5

this case the graph is named Bode plot!¢ (figure 2.5).

In fact for w <<mw, we get |A(w)|=A, and for w>>w, we get [A(w)|=Aywy/ .

The parameter f,=2m/w, is named break frequency, and it is normally of the order of few Hz.

The product Ayw, , where Ay=A(0) is the value of gain at zero frequency, is named gain-

bandwidth product (GBP or GBWP).

The frequency w; at which the open loop gain is 1 is named unity-gain frequency and its value
measures the OA speed. In the Bode approximation we get w; =A,w,=GBP, and w, is the
intercept on the horizontal axis: in fact for A(w;)=1 we obtain 20log[A(w,)]=0.

The maximum current (Ipamax) that a common OA may supply to the output shorted to ground is
of the order of few mA, but there are also models with a power output buffer providing currents
up to a few ampere!”.

Two parameters closely related to GBP are: the t (rise time), which is the time required to bring
the output voltage from 10% up to 90% of the steady value when we fed to the input a step
signal, and the slew rate, which is the maximum speed of the output voltage changes (usually
measured in V/us). The rise time depends on the closed loop gain G, and practically is reciprocal

of the bandwidth: T=~1/Aw=G/w,. The slew rate is generally measured with G=1, and it is

limited by Ioamax-

14 For some details on complex notation and imaginary unit see Appendix B

15 For details on filters see chapter 8.

16 See: http://en.wikipedia.org/wiki/Bode plot

17 See for example National pA759 and nA791, Siemens TC365, SGS L165, Burr-Brown 3571, ...
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3. The operational amplifier as signal processor

By providing the OA with negative feedback, using passive elements as resistors or capacitors,
we obtain an amplifier that has lower gain but much higher stability. Negative feedback means
that a fraction of the output voltage is fed to the inverting input of the OA. This type of
configuration is named closed loop, and we’ll use the symbol G to indicate the closed loop gain,
to distinguish it from the open loop gain A: G<<A.

With negative feedback, the circuit's overall gain and other parameters become determined more
by the feedback network than by the op-amp itself. If the feedback network is made of
components with relatively constant, stable values, the unpredictability and inconstancy of the
OA parameters do not seriously affect the circuit's performance.

Using negative feedback we may build circuits that perform on voltage signals operations as sum,
subtraction, differentiation, integration.

When the OA operates outside the linear region, we may use both negative and positive feedback
to obtain switching circuits (threshold detectors, timers, pulsers ...).

With positive feedback within linear region we may also build oscillators, phase shifters ...

Most of the devices containing OA may be easily analyzed by using the ideal AO approximation,
the Kirchhoff’s Laws and the superposition principle.

In this chapter we’ll study the basic configurations: inverting and non-inverting amplifier, the
summer and the differential amplifier. We’’ also investigate the effects of finite open loop gain

(A=0) and of finite bias currents (I, =0).

3.1. Inverting amplifier

The inverting amplifier circuit is shown in in Figure 3.1.
We use hereafter the ideal AO approximation.

From Iy, =0, we get V,=—RIy,=0. The role of resistor

R, whose value is here arbitrary, will be clear when

we’ll take into account real OA with I,=0.

Assuming infinite value for the open loop gain

(A =o0), the input differential voltage must be zero.

In fact V4=V,-V,=V,/A=0, i.e. V;=V,. Moreover,

because I,,=0 we get V,= 0 , so that the feedback

Figure 3.1

keeps both the non-inverting and the inverting
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terminal bound to a virtual ground's.
Because also I,,=0 , we get I, =1 - I,; = I; , and through the Ohm’s Law (I=V/R) we obtain the
relation (Vi—V1)/Ri=(Vi—V,)/R,, 1e. Vi/Ri=V,/R,, that gives the closed loop gain
G=V,/Vi:

G =V,/Vi= —Ry/R;. [3.1]
Relation 3.1 shows that the closed loop gain depends only of the values of R, and R;.

3.2. Non-inverting amplifier

Ri I Io Ro Another basic configuration is the non-inverting
_—  —» —
_| ¢ Il amplifier, shown in Figure 3.2.
vi |~ The ideal OA approximation gives again V,=V;
R
\C]H:Ih%\'/z— + Vo because Iy, =0, (no voltage across R).
1
Also here V,=V,, because A=, and therefore
Figure 3.2

Vi=V; . Again Iy = [; - I; = [; and through the
Ohm’s Law (I=V/R) we obtain [;=-V;/R;=Iy=(V, -V, )/ R,.

Replacing V; b V; in the last relation we get closed loop gain G=V /V;:

G= V,/V,= 1+RR; [3.2]

Again the value of G depends only on the values of the resistors in the feedback network.

3.3. Voltage follower

A particular type of non-inverting amplifier is obtained for

R; =co (open circuit): for any value of R (e.g. for R =0, as in

o) Figure 3.3) we get G=1.
Vi 0 This circuit is named buffer (or voltage follower because
1
Figure 3.3 V,=V;).: it offers high input impedance and low output

impedance; it therefore does not load the input signal and

approximate at the output an ideal voltage source.

18 A node in a circuit is named virtual ground when it is bound to ground potential without a physical short circuit
to ground.
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3.4. The differential amplifier

Figure 3.4 shows the circuit of a differential Ril Rol
. . . Vi] o——} !  E—
amplifier with negative feedback. It may be seen vV,
as the superposition of an inverting and a non- R V, e
ViZ Vo

inverting amplifier.
The output voltage is the sum (Vo +Vo2)of two Ro2
contributions: the one due to the inverting =
amplifier (when we switch-off the source Vi): Figure 3.4
Vo1 =—(Ro1/Rj1) Vi1, and the one due to the non-
inverting amplifier (when we switch-off the source Vii): Vo2 =(1+Rs1/Ri1)Vi2 Roa / (Ro2tRip).
In the particular case of balanced amplifier!’®: Rijj=Ri=R; e Ro1=Ry2=R,, we obtain at the
output: Vo= Vo1 + Voa =(Ro/Ri)( Via—Vin).
The closed loop gain is therefore:
G4=V,o/Va=R,/R; [3.3]
In the more complex case of unbalanced amplifier (R,1 #Ry2 and/or Rj; #Ri) the analysis is

made easier if we write V,, in terms of V,, and Vq:

V. = R,R; -R R, v R, [“‘Rn /R, ]1

0 o -V, =G, V., +G,V, [3.4]
Ri(R; +R,) Ry |1+R, /R, |2

relation that may be deduced from the circuit of Figure 3.5, using the superposition principle.
In the special case of equal ratios

Ro1/Ri1 =Rs2/Riz (= Ro/Rj), eq. 3.4 shows that the

common-mode gain is G, =0, and the differential

gain is Gq =R,/R;. This demonstrates (for V,s= 0)

that we may balance the differential amplifier

simply adjusting one of the four resistors.

The effect produced by a small unbalance may be

evaluated letting R;;=(1+x)R; , Rp,=(1-X)R; , Figure 3.5
R, =(1-x)R,, R, =(1+x)R,: substituting into eq. 3.4 yields G, =4x(R,/R;)/(1+R,/R;), that

for R,>>R; gives G, = 4x. Using precision resistor (x=1%) in the worst case we get G, =0.04.

19 To balance a differential amplifier means to minimize the common-mode gain (i.e to maximize CMRR). We must
remember that sole role is played by the output impedances of the sources V;; e V;y, that add up to R;; and Ry,

respectively.
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3.5. Inverting summer

We may easily add voltages by means of the circuit shown in Figure 3.6.

\ Y V .
Because I, +1, + ... I, =1 , we get V,=-R, —L 424 2| With R,=R;=... R, , more
Ry R, Ry

simply V,=-2Z.V,.
The output voltage may be written V0=—ROZiIi , where I; are the currents injected into the

inverting node.

R R] Ro
RI — —
Vio—— == —2 il L
v R2 ! ° ; " — >
2 > 1
o— Iz I — Vi o—I[—1 A + Vo
Rn : + —O R2
Vn o—:r_T’J I Vo  V2o—r—
n
= R

Figure 3.6 Figure 3.7

3.6. Non-inverting summer

In the non-inverting configuration as in Figure 3.7, the analysis is equally simple. At the node A

the sum ZiIi of currents Ij is zero, in fact I, =0; by writing Zili in terms of Ohm’s Law (I=V/I):

VioVa B Va, e Va

0
R, R, R,
. VvV, V V, 1 1 1 |V
or , letting R* = Ry|| Ry |[...|| Ry L2y L=V | —t—t+— /:.
Ry Ry R, Ry Ry R,) R

The non-inverting amplifier gives Vo, = GV with G =1 + R,/ R; and finally we obtain :

Vl Vn
—+ +...+—

1 2 n

V,=GR'| 1y Y2 -GR'Z(V,/R,)=ZaV,

where (0j = R*/R;j). In other word the output voltage is a linear combination of the input
voltages.

If the resistors Ry ...Ry, are all equal we get Vo=(G/n) Z,V; » Which states that the output voltage

is the mean value of input values.

For G=n, i.e. Ro=(n—1)R; we finally get simply a non-inverting summer of the input voltages.
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3.7. Effects of bias currents and offset voltage

In order to control the reliability of the ideal OA model, let us now calculate the effects of non-
zero bias currents I, and non-zero input offset voltage Vs, while maintaining the approximation
A=c0.

The output voltage of ideal OA with zero

. Ri

input voltage should be zero for both L_: —>

. . , . . = i b

inverting and non-inverting amplifier (note -

that for Vi=0 the circuits of Figure 3.1 and R Vi

Figure 3.2 are identical. In Figure 3.8 . @ V>
= I,

shows the input offset voltage V, fed to the

non-inverting terminal: this is equivalent to Figure 3.8

feed an offset of opposite sign to the

inverting terminal.

So the output voltage in the circuit of Figure 3.8 is the result of I, #0 and V,#0 for both inverting
and non-inverting amplifier.

Assuming A =00, we get V,—V,=Vy/A =0, and therefore V,=V,. But now V,=—1I» R+ V.
The relation I,=I +1Iy; may be written: —V;/R;=(V,-V,)/R,+1I;. Eliminating V; and V,, we
get: V, =V, (14R,/R;) + R Iy —R( 1 +R,/R)Ipy.

Defining I = (Ip2—Ip1) , and eliminating Ibl, we obtain the relation:

V, = Voo(1+R /R) —R I +[R ~R(1+R /R)]Ip; [3.5]

OIOS

where Ipo=Ip1>>1 ¢, the input offset voltage V ¢ is amplified by a factor (1+R,/R;).

0s ?

A proper choice of the resistor R cancels the third term: for R=R R; /(R,;+R;), 1.e. R=R_ || R;,

the effect of bias currents is reduced to R I

olos» Where the input offset current 1 is normally 10

times smaller than Iy. This particular choice for R is explained by the fact that it balances the

input impedances of inverting and non-inverting inputs.

3.8 Effect of the finite open loop gain

Let us investigate now the effect of the finite value of the open loop gain for the two basic
circuits, maintaining the ideal approximations of symmetric channels (Ag=A" =A™ =A, i.e.
CMRR =0, or Ay =0), and neglecting bias currents (I,=0).

The output voltage is again:
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Vo=A(V2—V)). [3.6]
We’ll use a simplified notation by introducing the parameter f ( feedback fraction), which is the
fraction of the output signal that is fed to the input terminals. In previous circuits, the feedback is
fed to the inverting terminal (negative feedback), i.e. B=V;/V,, or B=R;/(R,+Rj).
Let us begin with the inverting amplifier circuit.
We apply the superposition principle to calculate, at the inverting input, the separate
contributions of the two sources V;j and V,, that we rename V; and V.
The signal V; at the inverting input may be written as V;=V;+V;, with V;; = (1-p) Vi, and
Vio=p V. We thus obtain Vi=Vi + Vi, =(1-p) Vi+p V..
Neglecting I, we get V,=0. And substituting these values V; and V, into relation [3.6], we
obtain:
Vo=(1-1/p) Vi/{1+1/AB} =(-Ro/Ri) Vi/ {1 +1/AB}. [3.7]
The closed-loop gain G=V,/ Vi becomes:
G/{1+1/AB}, [3.8]
where G is the value calculated in eq. 3.1 (with A =c0), that may be written in terms of 3, as
G=1-1/p. [3.9]
Let us now investigate the non-inverting amplifier case.
Here we have V.= V,, and V;; =0, i.e. V;=p V,. Neglecting I, we get V,=V;j, and using
again relation [3.6], we obtain:
Vo=(1/B) Vi/ {1+ 1/AB} = (1+R,/Ry) Vi /{1 +1/AB}, [3.10]
Which shows that also for non-inverting amplifier the closed-loop gain is:
G/{1+1/AB}, [3.11]
when G is the value calculated in eq. 3.2 (with A =c0) that may be written now as
G=1/p. [3.12]
The product A is named loop gain, and its reciprocal 1/{AB} is named loop gain error, because
it measures how much the real circuit differs from an equivalent circuit using ideal OA.
For AP >>1 the closed-loop gain is the one calculated in the ideal case.

In other words, the ideal OA approximation holds until |G| <<A.

3.9. Input and output impedances for real OA in closed-loop configurations

The ideal OA model gives for the inverting amplifier Zi, =R;, and for the non-inverting amplifier
Zin =, while the output impedance is by definition Zq,=0.

The input impedance is defined as Zi, = V;i/Ii, .
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In the ideal inverting amplifier the input current is Li, =(Vi —¢)/Ri, where ¢ is the closed-loop
differential input voltage, which is zero in the ideal model e=V, /A =0 (because A =0).

In the ideal non-inverting amplifier the input current is Ii, =Ip> =0, by definition.

A refined approximation for closed-loop Zi, and Z,, , must take into account the open-loop

parameters of real OA : A+, Z,#0 (typically Z,=~100 Q) finite value of Zi,.

Figure 3.9

Figures 3.9a and 3.9b show models of open-loop and closed-loop real OA.

We distinguish between the impedances of the input channel Z, i, and the differential input
impedance Z4 (usually Z; i, >109Q and Z4=102Z, 5i,). The voltage-controlled-voltage source
¢A, driven by the differential input voltage e=V,— V), is in series with the open-loop output
impedance Z, which may be seen as the internal resistance of the source €A.

However, because Z4<<Z; »in, we’ll neglect Z, i, , assuming Z in = Zin = 0.

By definition the closed-loop output impedance is Zq=0V, /0 1,, that may be written here:
Vo=G Vi —Zou Lo, [3.13]

equation where the first term at right measures the output voltage with infinite load (Z; =0 , zero
output current), and the second term measures the change of the output voltage due to the current
I, supplied to the load.

From the definition of the open-loop output impedance Z, , seen as internal resistance of the
source €A , we get:

Vong_Zo Io- [314]

Let us first consider the case of non-inverting amplifier shown in Figure 3.9b.
Recalling that V;=f V, and V,=V;, where V; is the voltage fed to the non-inverting terminal
(we neglect the voltage drop across the output impedance of the voltage source due to the bias

current Iyy).

The differential input voltage € may be written e=V,— V,=V;—f V,, , which changes relation
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[3.14] into :

i zo | (B ) [z,
VO _[1+BAJ\/1 _£1+BA]IO_LI‘FI/ABJVi_[l-I-BAJ]O [315]

The first term at right in [3.15] is the same result found in [3.10]—[3.12], i.e. the closed-loop gain

G =1/ (corrected by the factor1+1/Ap), while the second term, by comparison with [3.13], gives:

z
Zout=1+[‘; : [3.16]

The open-loop output impedance Z, is scaled down, due to the negative feedback, by the factor
(1 +BA), which is normally >> 1. A typical example: with G=100, i.e. f~10-2 and with A=105,
i.e. AB=103, and with Z, =100 Q, we obtain a closed loop output impedance Zoy=~Z,/Ap=0.1Q.
This justify the approximation Z,,~0 that we made for ideal OA.

To calculate the closed-loop input impedance Zi, = Vi / Iin, we note that (assuming Zoi, >> Z4) we
may write Li, =€/Zq , or Zin=Z4 Vi/e. Now recalling that ¢ = V; — BV,, or Vi/e=1+p(V./e) we
finally obtain:

Zin= Ze[1+B(Vo/6)] = Za(1+BA), [3.17]

The approximation shown in 3.17 is due to the voltage drop across Z, : the voltage ¢A generated
by the voltage-controlled-source, is divided by the Z, in series with the load Z;. Therefore
V,=¢AZ; /(Z,+Z;). Assuming a negligible current?® in the feedback resistor R, we obtain:
Zin=Zq[1+PA Z /(Zy+Z;)] [3.18]

Relation 3.18 should replace relation 3.17 when Z; <<Z, (e.g. when output is shorted to ground).
Let us evaluate an intermediate case: Z;=10MQ, Z,=100Q, Z; =100Q, G=1/8=100, A=105:
Zin=Z4 (1+PpA/2)=501Z; =500 M Q.

We may conclude that the open loop input impedance Z4 is normally multiplied, due to the

negative feedback, by a factor of the order of the

loop-gain (BA>>1), justifying the ideal OA Vi o=—=2r— —*» —
I Rl Y Re

approximation (Zi, = 0).
A similar analysis may be carried out, with reference V1= pVo+(1-B)Vi 0=~
to Figure 3.10, for the inverting amplifier. g Z

. . V=0 0---
Here to calculate Z,, we still use relations [3.13] I

and [3.14], but now the differential input voltage is =
Figure 3.10

20" Accounting for R, we would get a larger Z;,, , by a factor close to 1/(1-f).
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e=V,—V;=-V|, because V,=0 (to make thing easier we assumed R=0 at the non-inverting
input).

Using the superposition principle to calculate Vi=V;;+V,, , we obtain
e=—Vi=—[p Vo+(1-B) Vi], [3.19]

that , with relation [3.14] V,=¢A-Z, I,, gives for V,

V—ﬂ _i 3.20
Cl1+1/BA )T L 14BA ) [3.20]

In relation [3.20] the first term at right is the same result found in [3.7] for the closed-loop gain of
non inverting amplifier G= 1-1/p, corrected for the loop gain error.

Comparing [3.20] with [3.13], we obtain again the expression [3.16] for the closed-loop output
impedance Zqy: = Zo/(1+pA), which is practically zero if A>>1.

Again we may calculate the closed loop input impedance as Z, =V,/1. , but now the input current

in®

I is the sum of two contributions: the bias current I, =—e/Z, and the feedback current

I, =(-¢-V,)/R,. With the approximation V_ = €A (again neglecting the voltage drop across Z)
we obtain I, = - ¢ [1/+(1+A)/R,], and using e=—V,
L =AV/R, [3.21]

The Ohm’s Law gives also V=V, + R, I, , or, using [3.21] V= (R, /A+ R,) I, , which yields:

Z =V./IL =R +R/A=R. [3.22]
The closed-loop input impedance of the real inverting amplifier therefore approximates R;, the

same predicted by the ideal OA model where both input terminals are bound to virtual ground.
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4. Some examples

In this chapter we’ll study some examples of differential amplifiers with variable-gain, and one
amplifier, which may switch from inverting to non-inverting configuration by simply changing
the value of two resistors. These circuits may be used as building blocks when drawing more

complex systems, as we’ll see in the next chapters.

4.1. Differential with variable-gain

To change the gain of the differential amplifier of Figure 3.4 while keeping it balanced, we
should properly adjust two resistors, e.g. by using mechanically-coupled potentiometers.

This difficulty may be by-passed using the

R/ Ry Vi R} . : S
Vi S ———— circuit of Figure 4.1 where the gain is adjusted
l R i-3> by a single potentiometer, after it has been
Vx' O v, balanced by a proper choice of the six
v + . ) O resistors (R' and R"), i.e. letting R;'=R,"=R;,

Vo RV o - R,=R,"=R, and R,=R,"=R,.
R;" L Ry V4 RS 4 Using the ideal OA approximation Iy = 0, so
Figure 4.1 that we may write the two equations:
(Vi-VO/R;=(V,-V3)/R, and  (V,-V)/R;=(V,-Vy)/R,, [4.1]

where we assumed V,'=V,"=V_ because A= o.

By subtracting the second equation from the first one we obtain:
(Vo,=V)/Rj=(V3-Vy/R,. [4.2]

The ohmic value of the potentiometer R may be written R=x R, and using the Kirchhoff Current

Law at the nodes V; (i1 —1=13) and V, (i +1=14), we obtain the two equations:
(Vi-V3)Ry~ (V3-V)xR, = (V3-V /R, [43]
(V =V /R H(V3-V, /xR, =V, /R,. [4.4]
By subtracting eq. [4.3] from eq. [4.4] we get:
V/R,=(1+R, /R, +2/x)(V5-V,)/R,. [4.5]

Finally, by substituting the quantity V5-V, =(V, V) R/ R; taken from [4.2] into [4.5], we
obtain the closed-loop differential gain Gg= Vo/(V2—V1) :

V= (14R /R, +2/%) (R,/R;) (V- V). [4.6]
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In the simplest case R, =R the variable gain is :

G,=2(1+1/x)R,/R) . [4.7]

4.2. Differential with linear variable-gain

In the previous example the gain is a non-linear function of R. Using two OA we may obtain a
linear adjustment of the differential gain. Hereafter we describe three possible configurations.
The circuit of Figure 4.2 may be easily understood by considering OA2 as inverting amplifier for

the source V. The feedback is provided by the potentiometer R with feedback factor f=x/(1-x).
The gain is therefore G, =— 1/ =—(1—x)/x = 1-1/x. To avoid the saturation of OA2 for x— 0, we

should place a resistor R' in series to xR. Here to make simpler the analysis we’ll neglect R',

keeping in mind that x-value must have a lower limit.

Figure 4.2

Using superposition principle with V,V, and G,V sources, we may write:

veRoy, R Ry R Rgy [4.8]
R, ' R+R,| R, R, +R,| R, °
Solving with respect V, we get
Vo=RyRN(V,=V)(1-Gy) =x (R/R)(V,-Vy) [4.9]
So that the differential gain is linear:
G4=V,/(V,-V))=xR/R; [4.10]

The maximum gain is for x=1, i.e. for Go=0: in this case this circuit is equivalent to that of
Figure 3.4. Note that two pair of resistors (R, and R,) need to me matched.

A similar configuration is show in Figure 4.3, where the potentiometer is replaced by a resistive
divider made of a variable resistor xR and a fixed resistor R; moreover no feedback is fed to the

inverting input of OA1, but a negative feedback is provided by OA2, still acting as inverting
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amplifier with gain G, =—1/x. Also here a resistor R' should limit the value of G, to avoid

saturation of OA2.

Figure 4.3

Using superposition principle with V,V, and G,V sources, we now use the open-loop gain A,

that we assume A — co.

R, R R
V, =—AV;—>=—+AYV, —+AG,V, . [4.11]
R;+R, R;+R, R;+R,
Solving for V we obtain:
V, R 1 R
G =—2"—= e /| =+ ————, [4.12]
V,-V, (R +R, A xR, +R))

that for A =00 gives again Gy=xR_/R;.
Also here two pair of resistors (R, and R;) need to me matched.

In the third configuration (figure 4.4) OA1 is a an inverter (inverting amplifier with G=-1) and

OA2 is an inverting summer with G,=—xR /R for the two sources V, and - V,.

Vlc f

—_

xR

V, o

oV,

Figure 4.4

Also here two pair of resistors need to me matched (R and R, ): moreover, a good choice would

be R; =R, in order to balance the input impedances of the two channels.
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4.3. Differential amplifier with variable —gain and high Z;,

In the basic differential amplifier of Figure 3.4 (but also in the circuits of Figures 4.1, 4.2, 4.3,
4.4) the input impedance cannot be made very high, in order to avoid vanishing 2! feedback
currents.

If the sources feeding the inputs of the basic differential amplifier have large output impedances
Zout12 1n relation [3.4] we must replace Ri; by Rij + Zou, and Rix by Rip + Zgue. This will affect

mainly the value of G.n. To avoid this inconvenience we may use the circuit shown in Figure 4.5.

Figure 4.5

To make easier the analysis of this circuit we may start by studying first a simpler one: that
obtained removing the branch drawn as dotted line in Figure 4.5. Deleting the potentiometer xR,
OA1 behaves as non-inverting amplifier, yielding : V;=(1+R /R)V;.

On the other hand OA2 behaves as inverting amplifier for the source V3 and as non-inverting
amplifier for the source V2, yielding : V,=(1+R'}/R'))V,—(R"|/R')V;. Letting R', =R; R';=R,,
we get V= (1+R/R)(V,—V)), that is a differential amplifier with fixed gain G,=(1+R/R,).

In order to make variable the gain, we insert the potentiometer xR which injects the current
I=(V,-V)/xR into OA1 and the current —I into OA2. This current adds a voltage —IR at the
OAL output, which is amplified of a factor (-R';/R')) by OA2, and it adds a voltage IR’ at the

OAZ2 output (as we have already seen in the summer circuit of Figure 3.6).

Putting all together we obtain:

Rl Vo — V] R1 Vo— Vi RI R1
V. = 1+— (V,-V;)— R|— H+——R,=|1+—+2—(V,-V)), [4.13
O[R}zl)xRO[ xR ! Rszl)[]

0 Ry 0
that for R; =R =R, gives: V =2(1+R/xR)(V,—V). Note that also here we must obviously set a

lower limit to x. Relation [4.13] shows that the gain control is not linear. Good matching of four

resistors is required (R'; =R, R';=R,).

21 The current flowing in the feedback must always be much larger than the bias currents.
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4.4. Instrumentation amplifier

A frequently used circuit, shown in Figure 4.6, offers the same advantages of the previous one,

i.e. high Z, and variable gain, but now we also get symmetric channels.

o—
Vi

p—

Figure 4.6

We may repeat the trick previously used: without potentiometer xR, the circuit is a basic
differential amplifier with a buffer at each input. Therefore the output voltage is

Vo= (Ro/R1)(Vg=Va), [4.14]
with V,=V, and Vg=V,.
The potentiometer xR injects the current I=(V,-V)/xR into the buffer OA1 and subtracts the
same current from the buffer OA2, producing (§3.5) the voltage —IR, at the output V,, of OA1
and the voltage +I1R5 at the output Vg of OA2 :

VA = VI_RQ(VZ_VI)/XR9 VB = V2+R3 (VZ_VI )/XR [4 1 5]

We obtain the same result using the superposition principle, considering the sources V, and V,
first at the output V, then at the output Vy.
V=V, (1+R,/xR) -V,(R,/xR) V= V,(1+R;/xR) —V,(R3/xR).

The voltage difference (Vz—V ,) at the input of the basic differential amplifier is:
(Vg—V,) = [1+(R,21R3)/XR] (V,—V)), [4.16]
which gives the output:
Vo= Ry/R) (Vp=Va) = (R/R[1+ (Ry+R3)/XR] (Vy-V)) [4.17]

In this circuit, frequently named instrumentation amplifier, the gain value is set by a single

resistor. Usually R,~R;, and a resistor in series to xR limits the gain.
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4.5. Amplifier with linear gain control from —K to +K

The circuit shown in Figure 4.7a allows changing the gain from negative to positive values, by

adjusting the potentiometer R

Figure 4.7

This circuits becomes an inverting amplifier with G=-R,/R; for x=0 (figure 4.7b), and a non-
inverting amplifier with G=1+R, /R, for x=1 (figure 4.7c¢).

In fact, for x=0, V; is a virtual ground (V,=0) and resistor R, has no effect. For x=1, V,=V,,
and resistor R has no effect. Resistor R in both cases loads the source V;.

In the intermediate cases (0 <x<1) we simply use the relations: I;=I,+1, and V|, = V,=xV,.

First relation may be written (Vi-V1)/R;=V/R;+(V-V,)/R, , and using the second one we

obtain : V;(1-x)/R; =x Vi/Ry+(x Vi—V,)/R,, that yields the gain G:

Vo/ Vi=G=R,/R; (x-1)+Rs /Rox+x. [4.18]
If we choose the three resistors Ry, Rj, R, in order to satisfy the equation R, /Rj=1+R, /R, =K
we make the gain to change linearly from -K to K.

Relation [4.18] in fact becomes G=K(2x—1).

A particularly useful case is K=1, obtained removing R, (R,=00) and setting R, =R;. This

circuit may be used as multiplier £1 by switching the non-inverting input between source and
ground.
The input impedance varies from R and R||R;: in fact the input current is the sum I + I;:

Z=Vi/ (1 +1)=R R,/ (R, +R[1-x]).
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5. Reference voltage sources

A Voltage Reference (VR) is a source that generates voltage that does not depend on the output
current, on temperature and on time (it approximate the ideal voltage source). It must have,

therefore, a negligible output impedance and high temperature and time stability.

El RL . ‘_\(;0
‘T L& LJR
T L
Figure 5.1 ) Figure 5.2
g g

A battery which has an electromotive force E, is not a voltage reference because its internal
resistance R; depends on the charge (increasing while the battery discharges) so that the voltage V
across the load Ry, decreases with time: V=E,—RjI. .

A battery followed by an OA, as shown in Figure 5.1, is a better approximation of VR, because
the current Iy, drained from the battery is small, independent on the load value, and therefore the
output voltage V=E,—R; I, well approximates E,. In the circuit of Figure 5.1 the output voltage
V, may be changed by adjusting the resistors R; and R,. Because V,=E,(1+Ry/R;), a
potentiometer replacing R,, gives a linear voltage regulator.

In the circuit of Figure 5.1 still the output depends on the battery temperature (that affects E

value). Battery may be replaced by a Zener diode?? as in the circuit of Figure 5.2, where the
unregulated input voltage V may be the OA power supply V., and the output becomes:
Vo=V,(1+Ry/R)).

Note that V, depends on the zener current I, that depends on V: 1,=(V-V,)/R.

5.1. Voltage sources with zener in the feedback

Because V, depends (slightly) on the zener bias current I,, it may be affected by changes in the
supply voltage; to avoid this problem we may use the circuit of Figure 5.3, where the zener is part
of the feedback loop, which keep constant the bias current I,.

To analyze this circuit, let us first neglect the divider R,, R, and diode D, and we assume that the

zener is biased by V >0.

22 Details on the zener diode may be found in Appendix A.2. Here it is enough to know that above a threshold value
of the inverse bias current, the voltage V, across a zener diode depends weakly on the current. The value of V,
(named zener knee voltage) depends on the type of zener.
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Using ideal OA model we may write: V{=V,, V,=V_, and V; =V, =V R3/(R,+Rj3) . Putting
all together we get: V,=V,(1+R,/R3). The choice for

V,, RyeR; must be compatible with the condition n R o |R_2,

V, <V,< V¢, to avoid saturation. ) A v,

The zener bias current is I,=(V,-V,)/R;=V,R,/R;Rj3, +VCC9 vV,

1.e. a constant value. The value of Rj should be R, R u Ry,

maximized (in order to leave most of output current Vs = ] V.

available for the load Rp) but with an upper limit set as Ry, b

R1<V,R,/IzminR3 (to properly bias the zener above the L = =
Figure 5.3

threshold I;min).
The divider (Ry, Rp) is only needed to start the reverse current through the zener, and to avoid the
second stable state, with a forward biased zener (V,<0) : the voltage V across a forward biased
zener has in fact a strong dependence on the current. The divider (R; , Rp) must satisfy the
relation V3=V Ry /(Ry + Rp) <V, so that, after

startup, the diode D is reverse biased.

A similar circuit is shown in Figure 5.4. In this case Vo
we get again V,=V R3/(R,+Rj3), but now
V,=V,=V,-V, which yields: V,=V,(1+R3/Ry). R,
The function of the voltage divider (R, Ry,) and

diode D, is the same as for the previous circuit.
Figure 5.4
5.2. Dual voltage source

A circuit that provides double output voltages (+V, and —V), is shown in Figure 5.5.
Here the zener is biased through the diode D and resistors R; , R3 ; note that the cathode of D is

connected by R3 to —V in order

to correctly startup the system.
The zener bias current is properly

set by Ry: I;=(V,-VEg)/Ry, where

Vr is the forward voltage of D.

The output voltage of OA1 is +Vy,

, while the output of the inverter

OA2is -V,

Figure 5.5
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6. Voltage-to current converters

If you need to use a resistance thermometer?3 you’ll have to measure the voltage across a resistor
while keeping constant the current flowing across it. This means that the current fed to the
resistor must be independent on the resistor value.

This chapter illustrates some examples of circuits named voltage to current converters, or
voltage-controlled current sources, that supply currents (independent of the load?*) whose value

may be controlled by a voltage source.

6.1. Floating load

If the load can be floating (i.e. none of its terminals non physically grounded), the voltage-
controlled current-source may be one the two circuits shown in Figure 6.1 .

Here the load R; is inserted into the feedback loop. In both cases the current I; =V;/R; flowing
across the load is controlled by the input voltage V; and scaled by the resistor R;. When V>0, the
direction of the current is that marked by the arrow. When V;<0, the output voltage changes sign

V, as well as the current direction.

= I V.>0 I
« V,>0 ] -
-0 0
V, <0
V.50 a  1=VyR, L b)
Figure 6.1

In the circuit 6.1a the voltages at the load ends are V, and Vj, the input impedance is high (the
OA closed-loop input impedance Z;,)) and the current is limited? either by the maximum value

supplied by the OA, or by the value I,;,,, =V ../ (RjTR}).

max ~

In the circuit 6.1b the voltages at the load ends are V and virtual ground, the input impedance is
R; , current is limited either by the maximum value supplied by the OA, or by the value

Lax= Ve Ry

max

23 More details on this topic are given in chapter 14.1
24 Common OA supply currents of the order of few mA. Special models can provide currents up to some A (e.g.
MP38) An alternative is to use a power output buffer made by discrete components (transistor): see Appendix A.4

25 The maximum output voltage V, depends on the model: normally | V, | = | V.. | — 2V, where V.. <30 V . Special
OA may provide larger output swing (e.g. LM 143 : 130V , LME49811 :100V, MP38: 200V, MSK 103 : 350V)
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6.2. Floating power supply

If the OA may be powered by batteries, we may use the circuit shown in Figure 6.2a.

b)

Figure 6.2

The analysis may be made easier by redrawing the circuit as shown in Figure 6.2b, where all the
voltages are referred to the floating ground (F.G.), and we easily discover it is equivalent to a

non-inverting amplifier for the signal (—V;).

Applying the superposition principle to the sources Vi and V'g=pV', we get: V' =-A[V;+V'g],
where V'g=V'R;/(R;+R}), or V', =-A[V;+V'R;/(R; +Rp)].

Rearranging the last relation we obtain V'j=—AV,/[1+ARi/(Ri+Ry)], that, for A—0o0, gives
V',==Vi(1+R /R)).

The potential of the floating ground (referred to real ground) is Vg =V;.

Because Ii=I. , Ii= Vgg /R; and I.=- V /R we have I;=- Vi /R;.

6.3. Loaded ground with floating control voltage

If a floating control voltage is available (as a battery for d.c. signal or a transformer for a.c.

signal) we may use one of the circuits shown in Figure 6.3

Figure 6.3

In both cases Vo=V 1Vj, in the first one because Vo=V1, V1=V3 e Vo=V 1Vj, in the second
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one because Vo=V +Vj, Vi=V3 e V,=VL. And, because I; =I; , we obtain
Both circuits may use an OA with unipolar power supply. The maximum available current is

achieved for V ~V_., that yields:

omax ceo

I max = Vee/ (RLHR)).

6.4. Voltage-controlled current source with all signals referred to ground

When full reference to ground is required we may use the current source shown in Figure 6.4.

We must find the relation between Vi, and V;.
ey I y ey I In the ideal OA model (Iy;=Ip2=0): the current
. conservation at the non-inverting node gives:
(Vo—V0)/R3=V/(R{|IR,), and at the inverting node:
(Vi=VD)/R =(VL—=Vo)/R,.

The quantity (V, — Vi), calculated from the second

Q
o oL
-_E o relation and inserted into the first relation, and using
] the identity (R, ||R,)=R; Ry/(R, +R,), gives:

Vi _y RoHR,
Ry '[RL(R;R, =R R3)—R,RR ;]

[6.1]

In relation [6.1] we see that I} still depends on the value of Ry, but if we properly choose the

values of Ry,R;, R,, R3,s0that R, Ro= R R; (i.e. R3/R,=Ry/R)) I} is independent of R; :
I, =-V;/R, [6.2]

The maximum available current is limited by the relation |V | <|Vc|.

Considering that the voltage V; may be written V{ =V (R || R2)/(R |[|[R2+R3), from I; =V /R
we get Iy . <V ./[Rp(1+ R3/ Ry)+R;3]. To maximize I} we must minimize R;.

The capacitor placed in parallel to the load helps preventing self-oscillations that might be due to

the positive feedback when the output is not loaded (note that for Rj=oco positive and negative

feedback fraction are equal, so that the OA works at open-loop).
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6.5. Voltage-controlled current source with two OA

A circuit, similar to the previous one, but with high input impedance is shown in Figure 6.5.

Figure 6.5

In this circuit we must carefully match the three resistors R, so that R=R; +R,,; in this situation
the output current becomes independent of the load Ry : I; =-2V,/R;.

The analysis may begin considering that OA2 is a basic inverter (V,=-V;); OAl acts as
inverting amplifier for the source V| with gain (—R/R,), and as non-inverting amplifier for the
source V;, with gain (1+R/R,). Moreover the voltage V| may be calculated by superimposing the
effects of the two sources V, and V3: V, divides over (R; , R ||[Ry) and V3 (=Vj) divides over
Ry, RL[[Ry).

The result is for V, and V; :

Vo =-Vi1=—[-V (R/Ry)+Vi(1+R/R))], [6.3]

v oy, RUR o RIR, 64]
R,+R, IR, 'R,+R, IR,

By substituting [6.3] into [6.4] and dividing by R; , we get
I; =-V,(Ry+R-R1)/[RL(R,TR1-R)+ R R>], [6.5]

Where it is clear that, for R =R;+R, , I} becomes independent of R;, i.e. :

I, =V /RL=-2V,/R,. [6.6]

The largest voltage swing takes place at the nodes at the V; and V, and must be V{|=|V,|<|V|:
using relations [6.3] and [6.6] we obtain I} .., <2Vc /[R1+(R1+Ry)(1+R/R3)]: which suggest to
use small values for Ry. The capacitor is also here useful to avoid self-oscillations when load is
removed. Note that here 5 resistors must be carefully matched: 3 identical R and then R{,R,,

(Wlth R1<R2) SUCh that R1+R2 =R.
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A similar circuit is shown in Figure 6.6. Here OA2
is a follower and AOI as non-inverting summer for
sources V; and V| scaled by the divider (R,,Ry).
Here the condition that makes I; independent on the
load R; is R{/Ry=R3/Ry

Because Is= I}, we may write I; =(V,—V)/Rs, and
we only need to calculate V V.

First we note that OA1 is a non-inverting amplifier

so that V =(1+R3/R;)Vy. The voltage V| is the
Figure 6.6
superposition of the sources V; divided by (R,,Ry),

and of VL divided by (R4 , Rz)ﬁ Vl =ViR4 / (R2+R4) + VLRZ / (R2+R4).
The last two equations give:

v oy LFR/R, IR /R,

° Y“1+R,/R, '1+R,/R,

[6.7]

If we let R3/Ry= R4/R,, the coefficient of Vjin [6.7] becomes 1, and observing that
(I+x)/(1+1/x)=x , we finally get V-V =V; R3/R;, and therefore: I} =V;R3/RsR;.

Because the value of Ry is arbitrary, we may control the value of I; by adjusting Rs (using a
potentiometer) instead of adjusting V;.

The maximum achievable current Iy nax 1s limited by the condition |V |=(Ry +Rs)IL <|Vc|, i.e.
It max <Vee/ (RLTR5). In this circuit we need to trim the value of a single resistor (e.g. Ry, once
Ry, R, e R3 have been chosen).

Also here the capacitor C is needed to avoid self-oscillations for R =oo (no load).

6.6. Current source with potentiometric control

All the previous voltage-to current converters may become current sources controlled by a
potentiometer by simply using for the input voltage V; the output voltage of a variable reference
voltage source (circuits 5.1 — 5.4)

Another simpler solution is that shown in Figure 6.7, where we use unipolar power supply and

load referred to ground.
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The output current is I;= V2/R; , the same flowing

across R (Ip=0). Because the OA is a follower

V=V 1=V,, and the voltage drop across R is the same V +V,

as that across the zener V, . As a consequence the

output current is I; =V, /R, where R may be freely

adjusted (above a minimum value Ry, as well see). ILl

The maximum current is I ... =(V..—V,)/ (R +R),

Figure 6.7

so that a good choice is V, <<V, while R, should be

ce?

selected to provide I,;, <I, <Iaomax, Where I,.;, is the threshold zener current, and Isomax 1S

the maximum current available at the OA output.

Because I, =(V,—V,) / R,—1; the limits above defined for I, set limit values to R, as follows:

(Vcc - VZ) / (IaOmax + IZmin) < Ro < (Vcc - Vz) / IZmin,

The minimum value for R which corresponds to I} ., s set by the condition:

V,/Rmin = (Voc—V) /(R HR,), 1.e. Rpmin >R RV, /(V —V,).
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7. Non linear circuits

In the previous chapters were described several circuits essentially made of AO and resistors,
where the current and voltage signals are processed linearly. By introducing non-linear elements,
as diodes, we may obtain many different non-linear devices. In this chapter we analyze some

examples of rectifiers, peak detectors, and basic logarithmic and exponential amplifiers.

7.1. Half-wave rectifier

The rectifier is a device that passes positive signals and blocks negative signals. The diode, by
itself is a basic half-wave rectifier, because it approximates an unipolar switch, i.e. a switch
driven by the sign of its bias?®.

The transfer function f of an ideal half-wave rectifier Vo=f (Vi ) is f (Vi)=V; for V; >0 and
£ (V=0 for V; <0.

In Figure 7.1a. we show the passive circuit that approximates an half~-wave rectifier.

Figure 7.1

Figure 7.1a shows that the transfer function of this circuit differs from the one of the ideal half-
wave rectifier. The negative signal is cut almost completely: a small part is left Vo = —Ry I,
where I, is the diode reverse current (of the order of few pA). For positive input voltages the
output only approximates the ideal function V,=Vj , the effective output is V,=V; —VF < Vj,
where VE~0.6V is the voltage drop across the forward biased diode.

The circuit of Figure 7.1b is a better approximation of an ideal rectifier: by inserting the diode
D1 into the OA feedback, we strongly reduce the effect of the forward voltage drop V.

To understand it we first neglect the diode D2. When V;>0, the output V3 tends to rise up to the
voltage AV; (where A is the open-loop gain). But the diode D1, forward-biased, feeds the

positive voltage to the inverting input through R,. The negative feedback blocks V; at the value

26 For more details on the diode see appendix A.1.
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V2=Vj, so that V3=V;+ V. Because I, <0 the voltage drop across Ry, is negligible and V,= V.
The effective error may be calculated by taking into account the real finite value of the open-loop
gain A. The differential input voltage is e=V1—V;= Vg /A. By considering also the finite bias
current: Vo= Vi — (Rolp + VE/A) =Vi—AV. For example with A=10™, [y=0.1 pA, R, =1 kQ we
have AV=0.1 mV.

For V;<0, the negative feedback is lost and the output voltage V3of the OA saturates:

V3=—V¢c . The diode D1 is switched off and the reverse diode current I, gives: Vo =-RyI,.

To avoid possible latch-up, i.e. the freezing of the OA at saturation (see chapter 9), we may
establish negative feedback through the diode D2, that for V;<0, gives V,=V; and V3=V;—-VE.
In this case, however, for Vi>0, we get V,=V;R; /(R,+R; ), and we must use a very high value
for the resistor R, (R,>>R; ) to approximate the output to zero: V,=V;R; /(R,+R}).

This choice requires using a FET-input OA to retain the ideal OA approximation (I negligible
with respect to the feedback current I, = Vi / R).

This problem is avoided by the inverting half-wave rectifier shown in Figure 7.2.

R R'
o — Vo Vo
Vi
D2 DI
V2
Vi V3 Vi "
Figure 7.2

Here, for Vi<0 (V3 >0) the negative feedback is supplied by R' and D1, while D2 is reverse-
biased and can be neglected. In the ideal OA approximation (Ip=0, A=00) we have Vi =V,=0,
V/R'==Vi/R, ie. Vo=—R'/R)Vj and V3=V,+V. With R=R' we get V,=-V,.

For V; >0 the negative feedback is supplied by D2 (D1 reverse biased): Vi=V,=0, V3=-Vy,
and V,=V,—-R'l, = 0.

7.2. Full-wave rectifier

A full-wave rectifier has the transfer function V,=| Vj|. One example is shown in the circuits of

Figure 7.3 with two OA: the first one has a twin-diode feedback and the second one is a basic

differential amplifier. Diode D1 switches-on for positive input and diode D2 for negative input.
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Ro'
1
| I |
Ro
Ri D2
> 1
Vi

Vo

v

Vi

Figure 7.3
Two conditions must be satisfied: Ry'=R,, R1/R1'=Ry/Ry' to give V,=(R,R2/RjRy)[Vj| . The

gain G=(RoR2/RjR1) may be set by a single resistor (R;), so we may also get G=1.

1
RO | I |
-
Vi R’ Vo
1 O
R
A
Figure 7.4
Here OAl

V1=—(R"1/R1)Vj, for Vi>0, and V=0
for V{<0.The voltage V is added to the
input Vj by the inverting summer AO2.
If the resistors satisfy the condition
R>=(Rj/2)(R'{/Ry) the output voltage is
Vo=(Ro/Rj)|Vi| =G |Vil.

A simple choice is R'1=R;=R;=R and
Ry =R/2, that, for R,=R gives G=1.

The circuit of Figure 7.5, however, does

Vi

Another full-wave rectifier that requires matching
only two resistors (R=R') is shown in Figure 7.4:
it is made of the circuits of Figure 7.1b and 7.2,
placed in parallel.

OA1 is a follower for positive input and OA2 an
inverter for negative input. Here we may release
the condition Ry>>R;p, because for negative
input the output voltage is set by OA2. The
capacitor  helps  rejecting  self-oscillation
increasing negative feedback when Vj >0.

A third full-wave rectifier is shown in Figure 7.5.

is the inverting half-wave rectifier described in Figure 7.2, that gives

Vo

Figure 7.5

not offer high input impedance. An alternative full-wave rectifier with high input impedance is

shown in Figure 7.6.
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D2 _
V2 Bl

Figure 7.6
Here OA2 works as inverter for the signal V,=V;, with G=-R'/R, when V; <0 because the D2

feed full negative feedback to OA1 (follower). When V;>0, we get Vi=V,=V1 and no current
flows across R and R', so that Vo=V;. If R=R' we get Vo= |Vj].

Resistor R; is needed to forward bias the diode D1 for V; >0, and to supply the bias current I+
to AO2 when V;<0.

A simple variant of the previous circuit is shown in Figure 7.7, where the resistor R, is added at

the inverting input of OA1, imposing however a gain G>1 for the full-wave rectifier.

Figure 7.7
For V;<0 we find again V,=—(R’/R)V; =-GV;.

For Vi>0, because diode D1 is reverse biased, by neglecting its reverse current we may write the
current conservation along the resistors R, R’ and Ry: Vi/Ry=(V;-V;)/R=(V,-V{)/R’, where
we also used the equation V;=V;. By eliminating the variable V; we obtain:
Vo =[1+(R+R’)/R,]Vj = [1+(G+1)R/R,] Vi, where G=R'/R. By choosing R, =R (G+1)/(G-1) we
obtain V,=G|V;|. Here always G>1, because for G=1 must be R, = o0 i.e. again circuit 7.6.

Another example of full-wave rectifier with high input impedance is shown in Figure 7.8.

Ri_ v, R2 vy, R3 vy R4

I‘: I ! I I
N D2 D1
_O
Vo
Vi
Figure 7.8

For Vi<0 the diode D2 is switched-off and the non- inverting OA1 gives: V,=(1+R,/R})V;,
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Whlle 0OA2 ampliﬁes bOth Vi and VzZ VO = (1+R4/R3)Vi — (R4/R3 )VZ = (1 — R4R2/R3R1)Vi.

For V;>0, the negative feedback establish V1=V,=V;=V,, and no current flows across

1o
resistors R,, R3 (and Ry), so that V,=Vj. In order to achieve V,=|V; we must set

R4R2/R3R1=2, c.g. R4/2=R2=R3 =R1.

7.3. Peak detector

An half-wave rectifier loaded by a capacitor becomes a peak detector for positive input voltages.
An example is given in Figure 7.9a, and Figure 7.9b shows the time evolution of input (dashed

line) and output (full line) voltages.

R v
; Vp a®)

¢
T a) b)

Figure 7.9

In the analysis of this circuit we first neglect the resistor R, and we assume only positive input

voltages. Within the ideal OA model (I, =0), the capacitor is charged through the diodes D2 and
D1 to the peak value Vj, of the input voltage Vi, and the output V, keeps this value also when V;j
becomes smaller than V), assuming I,=0 for the diodes reverse current. With real diodes (I5#0)
when Vi<V, the voltage V| saturates at -V , and the capacitor C slowly discharges through the
diodes reverse biased. Adding the resistor R, the voltage V3 is held to the peak value V,=V,, by
the negative feedback of OA2.

There is no more voltage drop across D1 and the reverse current vanishes, so that the capacitor
holds its charge (if we still neglect the bias input current of OA1) . The reverse current of D2 is
supplied by OA2 through R.

A negative peak detector is obtained by reversing the two diodes: the output voltage keeps the
minimum values assumed by negative input.

This circuit may be improved by adding a second feedback (R, in Figure 7.10) which cancels the

effect of finite I, in OA1, which is now drained from OA2 and not from the capacitor C.

The third diode D3 speeds-up the device by blocking V1 at the value V V.
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Figure 7.10

OA1 should be selected for high differential input and OA2 for low bias currents.

7.4. Logarithmic and exponential amplifiers

Logarithmic and exponential amplifiers allow multiplication and division of analogic signals, and
they could be used to build analogic computers. Their more common application, however is for
signal compressing or expanding, in order to change the reading scale. For analog multiplication
and division the most used devices are the transconductance 1C?7.

Her we give only a brief analysis of the working principle of logarithmic and exponential
amplifiers in basic examples.

To understand the behavior of the following circuits we must refine the approximation of the
diode used until now (the unipolar switch model), adopting the ideal diode model?8. The ideal is

as a non-linear element defined by the following voltage/current relation:

I4(V)=1,exp(qV/KgT) [7.1]
where V is the forward voltage, 14 the forward current, and 1, the reverse current (or leakage
current); Kg= 1.38x10723J/K is the Boltzmann constant, T the temperature in Kelvin,

q=1.6x10"1% Coulomb the electronic elementary charge. At room temperature (=300 K)

KgT/q=26 mV. This approximation is good until V>>KgT/q, i.e. [{>>1,.

7.4.1. Logarithmic amplifier

By replacing the feedback resistor with a diode in an
inverting amplifier, as in Figure 7.11, we obtain an
output voltage proportional to the logarithm of the input

voltage Vi, assuming Vi>0.

Figure 7.11

27 Tranconductance multipliers and dividers are treated in detaild i in Linear Integrated Circuit Applications, G.B.
Clayton, chapt. 6, in Operatinal amplifier and applications, W.G. Young chapt 6, and in Introduction to
Operational Amplifiers: Theory and Applications, J. Wait et al., chapt 3.

28 For more details on the ideal diode model see Appendix A.1.
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In fact, by neglecting I}, for the ideal diode we obtain:
Ii = Vi/Ri = Id = Ioexp(qV/KBT) [72]
From Figure 7.11 we have V4=V, -V, and therefore V;/R;I,=exp(—qV /KgT).

Taking the logarithm :

Vo=—(KgT/q) In (V; IR;) = 2.3 (KgT/q) log;o (Iy/1,) =S (log;o I;—log;o I,) [7.3]
where the scale factor S=2.3 (KzT/q) depends on temperature with slope 6S/SOT=0.003 °C-1,
The temperature dependence is also contained in the term log; oI, which approximately duplicates

every 10 °C ; moreover the magnitude of I, depends on the diode type, ranging from 1 nA to 1

Ic ‘
Ew Ri f Ri =
B o1 oI—
—_
B VO VO
a) b)

HA.

Figure 7.12
The ideal V4 (I4) curve is normally obeyed by real diodes for max three decades in I4. For an

extended range we may use a transistor connected as a diode , i.e. with the collector shorted to
the base electrode, as in Figure 7.12a.

Another configuration, also named transdiode?, is shown in Figure 7.12b. Here the collector and
base electrodes of the transistor are kept at the same voltage through the negative feedback
(collector at virtual-ground) so that the effective behavior is the same of ideal diode.

In the circuit of Figure 7.12b the I covers up to 10 decades (up to a few mA) and the output

voltage spans about 0.6 V.

The scale factor (S=<60 mV/decade) may be

changed using the circuit of Figure 7.13. Ri

We have V4 = -V, and neglecting the o— 1
V; >0

1

feedback current with respect to the current

flowing across the divider (R;,R;), we =

Figure 7.13

obtain Vl ZVORI/(R1+R2), Le.:

29 For more details on transistors see Appendix A.3 and for transdiodes see Operational Amplifiers, G.B. Clayton,
chapt. 5.
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V,=— R‘; R, 2.3(K;Tj log, (L, /1)) = —(1 + %J 60 log,,(V;/R/]I,)  [mV/decade].
1 1

The scale factor S, for R, = 16 R;, becomes S =1 V/decade. Moreover, using for R; a PTC

thermistor with temperature coefficient = 0.3% °C-1, S becomes temperature independent.
In Figure 7.13 the capacitor C, helps avoiding self-oscillations and the diode D1 protects the
transistor that could burn under excessive reverse bias. A more complete analysis should account

for the bias currents Iy, of the OA. 30

By assembling two logarithmic amplifiers and one differential amplifier we obtain an analog

divider (figure 7.14).

R [ P —T 1+

o I Ri Ro
Vi —_ 1 -
+ -0
L] + Vo
) i Ri
R Ro
o{— H--
V2 =
gy
. Figure 7.14
. R, (K,T .
The output voltage is: V, =— In(V, /V,) . Note that here the dependence of the diode
1 q

leakage current I, vanishes.

7.4.2. Exponential amplifier

An exponential amplifier can be obtained from the

circuit of Figure 7.11 by interchanging diode and

resistor in the feedback network : the result is shown

in Figure 7.15.
Using the ideal OA model, and for input voltages

Figure 7.15

satisfying the relations 0.1<V;<0.6V and

I, =I4<I'mA we get the output voltage: V,=-R;I; =—R;I, exp(qV/KgT).

30 More details on logarithmic amplifiers are given in Operational Amplifiers, G.B. Clayton, chapt. 5, or
Operational Amplifiers and Applications, W.G. Young, chapt. 6.
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8. Active filters

In this chapter we analyze filters, i.e. circuits whose transfer function depends on the frequency.
The transfer function is the ratio between the output signal and the input signal A filter modifies
both the amplitude and the phase of sinusoidal signals: in mathematical language, we may say
that the transfer function of a filter is a complex function3! . In a low-pass filter, for example, the
low frequency signals remain unchanged while high frequency signals are attenuated.

Examples of passive filters are the capacitive and inductive dividers (RC and RL filters),
described in Appendix B. The active filters offer the advantages of low output impedance and
high input impedance, and they may also have gain G>1.

In the literature we may find many recipes for designing filters with any transfer function
(Butterworth filters, Tchebeyscheft filters, Bessel filters). Generally the filters are classified by an
order number n (with n=1,2,3,4...) depending on the number n of the poles of their transfer
function3?; where » may be seen as the number of passive RC filters that should cascaded to
approximate such filter.

In this chapter we analyze the active filters most frequently used: first order filters, multiple-
feedback filters, VCVS filters, state-variable filters, and filters using impedance converters (NIC,
gyrators).

The first order filters are the low-pass (integrator) and the high-pass (differentiator); the all-pass
(phase-shifter) will be described in §10.3.

The multiple-feedback filters, and VCVS filters (Voltage Controlled Voltage Source) here
described will be those of order 2: higher order filters are generally obtained by cascading filters
of this type. The state-variable filters use the technique of analog calculators and are made of
active integrators and summers. The circuits NIC (Negative-Immittance-Converter) use OA with
both positive and negative feedback to transform an impedance (Z) into its negative (—Z), and

gyrators convert (Z) into its reciprocal (1/Z).

8.1. Active Integrator

By replacing the feedback resistor R, in the inverting amplifier of Figure 3.1 with a capacitor we

obtain an active integrator.

31 Complex (or vectorial) notation of signals is briefly treated in Appendix B. See also
http://en.wikipedia.org/wiki/Complex_number A time-dependent voltage signal V(t) may always be seen as
superposition of a large (or infinite) number of sinusoidal signals, and it may therefore be represented by a
function which is a sum of sine waves. In the complex notation the sinusoidal signal is
Vexp(jot) = V(cos ot +j sin wt), where j is the imaginary unit .

32 A definition of poles and zeroes in a transfer function is given in Appendix B.4
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In Figure 8.1a, the voltage V(t) across the capacitor C changes with time t due to the charge q(t)

carried by the current I.(t).

vi ® T ,,C v —
! i Ro C
ol H
SISO T
Vi AV
—OO Vi _Xo
V2 Va2
a) b)
Figure 8.1

In the ideal OA model (I,=0) we get I.(t)=Ig(t)=V;(t)/R.
Because V (t)=—[V;-V,(1)], from V; =V, =0, we obtain:

_ vy _.9®_ 1 __ I
Vo ==Ve === lec(t)dt chovi(t)dHV(O)

where we used the definition I(t)=0q(t)/0t. The product t=RC, named time constant, is the time
required to bring the output voltage from zero to the same constant voltage applied to the input.

In Figure 8.1b the resistor R, in parallel with C, provides the necessary d.c. feedback: without
R, the finite input bias current (and input offset voltage) of real OA produce an output that brings
the output (even with V;=0) at saturation (positive or negative depending on the Vyg and Iy

values).
For a.c. signals it is better to describe the circuit response through the transfer function

T(Gw)=V,/V;. The capacitor impedance’? is (Z. = 1/jwC), so that the ideal integrator of Figure

8.1a may be seen as an inverting amplifier with complex feedback with G(jw)=V /V; =—Z/Zg:
T(Gw) =-1/joRC,

Therefore the OA saturates at zero frequency, i.e. the output drifts to £V, for any d.c. input
voltage , making this circuit useless for any practical application.

By introducing the resistor R, the transfer function becomes:

T(jw)=—%=—(&) /RO -G [8.1]
A R JI/RO)+jo o, +jo '

where wo=1/R,C is named cut frequency.

The module of T(jw) is |T(w)|=w,G/0*+®; , and the phase is ¢=arctan(—w/wp). From now-on

33 The complex impedance id described in more details in Appendix B .
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the module of the transfer function will be named A(w)=|T(s)|. For d.c. signals or low-frequency
signals (w<<wyp), A(w) is practically constant A(w) =<G= —(R,/R), while for high frequencies
(w>>wm) the transfer function approximates the one of the previous circuit: T(jw) = —1/joRC.
The phase shift at high frequency is —m/2. At the cut frequency wg we get: A(w) =G/+2 and
d(wg) =—m/4.

The integrator is therefore a low-pass filter of order 1 (the transfer function has one pole, i.e. one

zero at the denominator).

8.2. Differentiator

By replacing the input resistor R; in the inverting amplifier of Figure 3.1 with a capacitor we

obtain the active differentiator of Figure 8.2a.

Figure 8.2
Because I;,=0, the capacitor C is charged by the current I (t) = Iz(t) = oq(t)/ot , where q(t) is the
charge accumulated on the capacitor electrodes, and the voltage V (t)=[V;(t)—V;]=q(t)/C. The
ideal OA model (V;=V,=0), gives V(t)=—RI.(t)=—R 0q(t)/ot , and therefore:
V,(t) =—RC oVj(t)/ot

The transfer function is T(jw) =-R/Z (jw) =—jwRC,: A(w)-T(w)| is zero for =0 and increases

linearly with frequency. This enhances the high frequency noise , making this circuit not

practically usable. A substantial improvement is obtained by adding an input resistor R; as in

Figure 8.2b The new transfer function becomes (by simplifying the notation with s=jw) :

T(s) = —— :_(Ej(ﬂjz[_ﬁj S g8 [8.2]
Z.(s)+R, (R, J\1+sR,C R, JI/RC+s @, +s

Here the cut frequency is wg =1/R,C, and the gain, still increasing with frequency, saturates at

G= —R/R; at frequencies w>>w( . More precisely, we get A(w)=IT(s)I=wG/ 0’ +0; , and
¢=arctan(wo/w), i.e. the phase shift becomes +n/2 for >>wq. At the cut frequency A(wy)= G/

V2 ,and ¢(wg)=+m/4. The differentiator is a high-pass filter of order 1.
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8.3. Multiple feedback filters

Multiple feedback filters of second order are made by one OA ad a passive network with
impedances Z; (R and C) in the general layout of Figure 8.3.

The transfer function of this circuit

may be easily calculated by observing
. . ? Z4 T Z5
that node B is a wvirtual ground
—> A 73
(VB=0), I3=I5 because I,=0,and by ViO—] L 5
. . . 71 > B Vo
imposing the current conservation at * 75
node A : 11 =1 +I3+14, and at node B: L
B=ls. Figure 8.3
The first equation (node A) may be
written, using Ohm’s Law:
I, = Vie Vs Ny M Ny °o=1,+I,+I,
Zl ZZ Z3 4

At node B we have:

\Y V

13 =—ft=-—t= Is’
Z2 ZS

which gives Vpo=-V, Z3/Z5 ; replacing V4 in the first equation and solving for V, we get
T(s)=Vo/Vj:
Z,/Z,

T(s)=-
©) (ZZ)NZ,Z)+(Zy+ 2, + 2,2,/ )] Z; +1
where we wrote the complex impedances Z;(s) simply as Z;

[8.3]

This is the general form of T(s) for all the second order multiple feedback filters, that we’ll use to
obtain the particular T(s) in special cases.

We will analyze the three main cases: low-pass filter, high-pass filter and band-pass filter.

8.3.1. Low-pass filter

If in the circuit of Figure 8.3 Z1, Z3, Z4 are resistors (Z=R), and Z, , Zs are capacitors (Z=1/sC),

we obtain a low-pass filter (figure 8.4) with transfer function :

R,/R, - Go;

T(s) = =5 2
$’R,R,C,C, +sC,(R,+R, +R,R, /R)+1 s> +2s{m, + 0

[8.4]

where G =R4/Ry, o,=1/R,R,C,C; and T=woC5(R3+R4+R3R4/R1)/2 is named damping

factor.
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R4r] — C5

R3
Vio——¥4—1 1
B Lo Vo
Rl ke
T
Figure 8.4

In this low-pass filter the frequency dependence of amplitude and phase are :

2
G w;

J© —0°) +2Lon,)’

- 2L,
> .

A(w) = 2
o’ -]

» ®(w) = arctg

8.3.2. The high-pass filter

If in the circuit of Figure 8.3, Z1, Z3, Z4 are capacitors (Z=1/sC) and Z, , Zs are resistors (Z=R),

we obtain a low-pass filter (figure 8.5) with transfer function :

_ -s°C,/C, B -s°G
1/(C,C,R,R,)+5(1/C,+1/C, +C,/C.C.) /R, +1 5 +25C0, +0F

T(s) 8.5]

where G=C1/C4, 0,=1//R,R,C,C, , and T=(1/C3+1/C4+C1/C3C4)/(2R5 my).

2
A@)= 0 _=, g(o)=arctg 2800,
@] -0 +(2Lwo,) o’ -~
C4 o R5

= C3
Vio_l A_I
Ci

B —0O Vo
uRz

Figure 8.5

8.3.3. The band-pass filter

If in the circuit of Figure 8.3, Z1, Z», Zs5 are resistors and Z3 , Z4 are capacitors, we obtain a band-

pass filter (figure 8.6) with transfer function :

_ -s*/(R,C,) _ -sGw,/Q
1/(C,C,R'R)+s/(CRH+s> s°+s0,/Q+o;

T(s) [8.6]

where C*=(C3C4)/(C3+C4) and R*=Rj||R2, ®,=1/{/RR,C,C,, Q=woC*Rs is the quality
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factor3*, and G=(R5C")/(R1Cy) is the gain.

C4
N C3 R5
i O—:I——I IL
v R1 B O Vo
u R2 f

Figure 8.6

The amplitude is A(w)=IT(s)=G/ \/1+Q2(o)/ o, -o,/0)’, and the phase shift, which change sign at

=My, 18 P(w) = arctan[—Q(w/wo—wp/m)].

8.4. Quality factor and damping factor

The meaning of the damping factor T is explained
by the graphs of Figure 8.7 where the amplitude
A(w) = |T(s)] (normalized to G) is plotted vs.

frequency (normalized to the frequency w) for

various values of T (for high-pass and low-pass).
For small T values the filter response is peaked

near the frequency wg. The peak frequency w,

may be obtained by zeroing the first derivative of

Alw) : o= wom for the low-pass, and

o, =0, /m for the high-pass. This shows

that a peak appears only for {<1/:/2~0.7.

The peak-amplitude is A(w,)=G/ (2@@ ) .

The peak disappears in the Butterworth type filter

where {=1/42. At the cut-frequency wg, we get Figure 8.7
A(wg)=G/2C; in the Butterworth filter therefore A(wy)=G/V2 .

The band-pass filter is better described by the parameter Q =(2C)-1.

34 For the quality-factor see also: http://en.wikipedia.org/wiki/Q factor
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Figure 8.8 gives the band-pass response for

different Q values as a function of w/w,.

Note that the transfer function is symmetric with

respect to w if the abscissa is traced in log-scale.
In the band-pass filter wg, takes the name of
central frequency, and we find that A(wg)=G.

The larger is Q, the narrower is the peak in the
band-pass response: the quality factor Q is defined

as Q=wy/(wp—wp), where w; and w, are the Figure 8.8

frequencies at which A(w12)=A(wq)/ NGY

In fact the equation A(m):G/\/1+Q2(m/(oO—0)0/w)2 , letting A(wi2)=A(wp)/ \/E , becomes

1+(w0/wl,z—wl,z/w0)2Q2=2, with the solutions o, = 030(«/1 +4Q? —1)/2Q and

w1=m0(\/1+4Q2+1)/2Q.

The difference w,—w;=Aw defines the band-width, i.e. the frequency interval where the
amplitude is within —3 dB with respect to the peak value A(wo): 20 log;q (1/+/2)=-3.

Comparing filters of first and second order we see

that (in the region w >>w,, for the low-pass and in
the region w <<w, for the high-pass) Anp(w) =
G(wg/w), Agp(@) = G(wy?/w?), and Ajpy(w) =
G(w/0p), Agpp(®) = G(w?/wy?), respectively.
The order number measures the steepness of the
slope of A(w).

In the Bode plot (figure 8.9), where the amplitude
is given in dB (20 log;(A), in a log-log plot, the

slope of a first-order low-pass filter (for w >>w)

is—20 dB/decade while the slope of a second-order
low-pass filter is -40 dB/decade. For high-pass
filters the slope is (for w <<w) +20 dB/decade and Figure 8.9

+40 dB/decade, respectively.
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8.5. Filters VCVS

A second important group of active filters of

second order is the VCVS (Voltage Controlled

Voltage Source)® .

These filters are made by one OA ad a passive

network with impedances Z; (R and C) in the

general layout of Figure 8.10. Figure 8.10
The transfer function may be easily obtained

by imposing current conservation at the nodes A (I; =1, +15) and B (I, =14), and noting that the
voltage is the same at node B and C.

Moreover, the basic non-inverting amplifier gives V,=GVyp.

Equation I; =1, + 15 at node A gives:

Vi_VA _VA_V0+VA_VB
Zl Z3 Zz ’

and relation I, =14 at node B gives:

Va—Vs — &
Z, Z,

Letting Vg =V /G, and solving for V5 yields V5 =(V,/G)(1+Z,/Z,), that, inserted into the first

vV, zZ,)Y1 1 1) G 1
A= 4+ 2| —F—+— |[-———
Z, G z,)\z, 7, z,) Z, Z,

The transfer function T(s)= V/ V; therefore is:

b

equation gives:

G
- 1+(Z,/2,)(Z41Z,)+(Z,+Z,)| Z,+(1-G)Z, /| Z,)

T(s) = [8.7]

The particular choice G=1, transforms the non-inverting amplifier into a buffer and the general

layout becomes the simpler one, also named Sallen-Key filter36, shown in Figure 8.11:

Figure 8.11

35 The name VCVS has historical reason, is is normally used to distinguish this layout, which also has multiple
feedback, from the previous one: the difference is that now feedback is both positive and negative.

36 Sallen, R. P.; E. L. Key (1955-03). "A Practical Method of Designing RC Active Filters". IRE Transactions on
Circuit Theory 2 (1): 74-85.
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Which involves only 4 impedances, and the general transfer function becomes:

_ -1
14+(Z,/2,) /(2,1 Z,)+(Z+Z,) 1 Z,

T(s) 8.8]

8.5.1. The low-pass VCVS
If in the circuit of Figure 8.11 Z, , Z, are resistors and Z3 , Z, are capacitors we get a low-pass

filter (figure 8.12), with :

1 >
T(s) = . =— 0 - [8.9]
1+5(R, +R,)C,4+s2(R R,C,C,) s +52Lw, + 0

L. [P

TC3 + -0 V,
ViO—{Rl} . {Rz}_LC
T4

Figure 8.12

The transfer function is similar to that of the multiple feedback low-pass filter of [8.4], but with

cut frequency o, =1//R.R,C,C, , and damping factor C:A\/q /C, (\/R1 /R, +4/R, /R, )
We may change w, at constant T, scaling the resistors by the same factor, or change C, at

constant w,, changing the capacitors while keeping constant their product.

8.5.2. High-pass VCVS
If in the circuit of Figure 8.11 Z, , Z, are capacitors and Z53 , Z, are resistors we get a high-pass

filter (figure 8.13), with :

_ -5 (R;R,CC,) _ ~s’
1+sR,(C,+C, )+SZ(R3R4 cC) s?+ s2lw, + (Dg ’

T(s) [8.10]

The transfer function is similar to that of the multiple feedback low-pass filter of [8.5], but with

cut frequency o, =1/,/C,C,R,R, , and damping factor C:A\/R3 /R, (\/C1 /C, +4/C, /C, )
We may change w, at constant T, scaling the capacitors by the same factor, or change C, at

constant w,, changing the resistors while keeping constant their product.

l R3 L .
Vio—||—g—||—r— 0
Ci C2 ﬂm
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Figure 8.13
If we let G> in the circuit of figure 8.10 the transfer function is simply multiplied by G, and the

damping factor € becomes respectively:

{=4%JC./C, (VR /R, +{R, /R, +(1-G)JR,C)/ R,C,))

for the low-pass,

{=4%R,/R,(JC,/C, +{/C,/C, +(1-G)R,C,)/R,C))

for the high-pass.

8.6. The state-variable filters

The state-variable active filters are made of two cascaded inverting integrators plus a summer that

adds the outputs of the two integrators (figure 8.14).

|— —B3V3 ?Ph
o——+BVin 2, _Jk1V1 dt —szw dt o)
Vin |— +B2V2 V3
o V2
Figure 8.14

To explain the working principle of this kind of filters we start with an example.
In Figure 8.15 we first neglect OA4, which does not affect the behavior of the circuit..

We calculate the voltage V| considering that OA1 acts as inverting amplifier for the source V3,
and as non-inverting amplifier with gain 2 for sources V; and V,; using the superposition

principle we get :

Vl =2 [ViRz/(R1+R2) +V2R1/(R1+R2)] _V3.

Figure 8.15

The same result may be obtained by applying the conservation of current at nodes A (I;=1,) and

B (I; +I3=0), and noting that V,=Vjp.

Because Oa2 and OA3 are inverting integrators we get V, =-V/sRC and V3 =-V,/sRC ; by
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inserting these into the previous equation we obtain:
V; (1+2R /sSRC(R | +R,)+1/(sRC)?) = V;2R,/(R|+R)).

The transfer function at the first output V is:

\ -s’2R, /(R;+R ’
T(s)= = SARRER) L SG sy
V. s”+s2R,/(R, +R,)RC+1/(RC)” s~ +s2Cw, + w,
where Wy = I/RC, CZRI/(R1+R2) and Gl =2R2/(R1+R2)
The transfer functions for the other two outputs V, and V3 are therefore:
Tz(s)=&=-vlw° . -sG,m, - sG,w,/Q : (8.12]
V, Vis  s” 4820w, +w; 8™ +sw,/Q+w,
where Q= 1/2C=(R1+R2)/2R1 and GZ =QG1 =R2/R1, and
2
VvV, V0 2
Tys) =3-1%_ 610 8.13]

Vi Vis? % 45200y +0F

Comparing [8.11], [8.12], [8.12], with [8.4], [8.5], [8.6], we see immediately that at V|, V,,V3

we have a high-pass, a band-pass and a low-pass.

Considering now also OA4 (an inverting summer for Viand V3) we obtain at the fourth output :

V4 =—(V;+V3), with the transfer function :

-G,(s* +w))

2 2"
s +sw,/Q + w;

Vv
T4(S):74:

i

[8.14]

Relation [8.14] describe the behavior of a band-reject (or notch) filter: for s2>>w(? or s2 << wq?
the amplitude A(s)— G, while for w=w, A(s)=0.
The band-width is Aw=w,/Q=2R{/RC(R+R,), the same as that of the band-pass filter.

Note that the state-variable filters are devices that may be used as analogic computers to solve

differential equations.

For example in Figure 8.14, because V,= —kZJV2 dt, we have V=—(1/kp) 0V3/ot, and also
V1 =—(1/k1)0Va/ot =(1/k k)02 V3/0t.

Letting V3z=y(t), 1/kiko=a, —B2/ka=b, P3=c and —BVi;=d, the function y(t) satisfies the
differential equation ad2y/ot + boy/ot + cy +d = 0.

This result is general: for any linear differential equation we may find a circuit, made of

integrators and summers, which gives the solving function..
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8.7. A simple notch filter

A notch filter may also be made of a single AO, as shown in Figure 8.16.

This circuit may be seen as a modification of that
shown in figure 8.3, by letting Z;=00 and by

feeding a fraction G of the input signal to the non-

inverting input.

Note that in this circuit the values of capacitors and

resistors are not arbitrary! In fact we must set

Z4=73=1/sC and G=Ry/(Ry1+2R}).

The transfer function may be calculated by Figure 8.16

imposing the current conservation at nodes A: (Vi—Va)/R1=(VaA—V,)sC+(Va-VB)sC, and at
node B: (VA—VB) sC=(VB—V,)/R2,, and by noting that Vg=Vc=VjR2/(R2+2R}).

G(s*+1/R,R,C*) G(s* +wp)

T(s) = =
© s> +2s/R,C+1/R,R,C* s’ +sw,/Q+w,

[8.15]

Here o, =1/R,R,C, Q=4%R,/R,, G=Rp/(Ry+2R;)<1, and the band-width is
Aw=wy/Q=2/R;C.

8.8. The impedance converter (NIC)

The circuit of Figure 8.17, converts the impedance Z

| into the impedance Z*=—(Ri/Rp)Z (a negative
Ii R1 .
Vi o== impedance).
E g + By definition, the input impedance is Z*=Vjy/I;, and the
: C
i R2 input current may be written I;=(Vi—V¢)/Ry. On the
i E— .
other hand the output voltage V¢ may be calculated as:
i Z
5 u Ve =-AV,+AV, =-AV,+ AV [Z/ (R, +2)]
+~ 1

= where A is the open-loop gain, which gives:
Figure 8.17

Vo=-v,/| L2 —>Vi(1+&j
A R,+Z Z

Putting all together we get Z* =V;/I; = V; R1/(Vi-V¢) =-ZR/R».
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8.8.1 A band-pass NIC filter

We may obtain a band-pass filter using a NIC

circuit as shown in Figure 8.18 The ideal OA

model gives Vc=V,, and the Ohm’s Law

gives [po = (Va—Vp)/Ry and Ig = (Vg—V)/Ry.

Therefore Ig= —-IaARj/Rp= —-G*Ig , where

G*=R|/Ry may be seen as the current gain of

the NIC of Figure 8.17. Moreover Vo,=Zplp

(with Zp=Rp || 1/sCp) and Vi—V 5 =Z,la (with Figure 8.18

Z,=Ryt1/sCy) and Vo=Vc.

By solving the system of all the above equations we obtain the transfer function V,/Vi:
~sG'/(R,C,) -sGw,/Q

T(s) = . = _ [8.16]
s> +s(1/R,C,+1/R,C,—G /R,C,)+1/RR,C,C, s +s0,/Q+

By comparing [8.16] with [8.6], we see that this is a band-pass filter, with central frequency
o, =1/{/R,R,C,C, , gain G=G*/(Co/Cp+Ra/Rp—G*).

The Q-factor Q= 1/(\/ R,C,/R.C, +/R,C,/R,C, -G {/R,C, /RaCb) may be adjusted by simply

changing the ratio G* of the resistors R; , Ry. The G* value, however is not arbitrary: we must
avoid excessive G values. E.g. for R;= Ry =R and C;=Cp=C, we get G = G*/(2-G*) and
Q = 1/(2-G*). Both Q—» and G—x for G*—2, so that the filter stop working for G* values too
close to 2, because the OA saturates.

An equivalent method to derive T(s), is to use the result obtained in § 8.8.

Then T(s)=Vo/Vi= Z*/(Zi+2*) = G*Zy/(Za+G*Zy), that gives again [8.16].

8.9. Gyrator

The gyrator 37 is a circuit that converts an impedance into its reciprocal, scaled by a factor K:
Z*=K/Z. If Z is a capacitor (Z=1/sC), the effective impedance seen from the gyrator input is
7*=sKC, equivalent to the inductance L*=KC. An example is the circuit of Figure 8.19.

By definition the input impedance is Z;=V,/I; . The negative feedback gives :V,=Vg=V; and

the Ohm’s Law gives: I;=(V;—V,)/Ry, so we only need to calculate V,.

37 The name explains that it rotates the vector associated to the complex impedance (changing a capacitor into an
inductance the Z-vector rotates by 180°.
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Atthe node A : (V=V,)/R3=(V,—V,)/R,, that solved for V, gives:

V,=(1+R2/R3)V; - Ry /R3V;.

At the node B : V=V R5/(R51+Z,), that solved for Vy gives V| =V;(1+Z4/Rs).

Therefore Z;=R;R3R5/(R2Z4)=sR;R3RsC/Ry = L*, where L*=R|R3RsC/R; (the effective

inductance) is the capacitance multiplied by RjR3R5/R».
This circuit is equivalent to an
inductance whose value may be made
quite large, useful for obtaining low-
pass LC filters with very low cut
frequency38. E.g. with 1kQ resistors,
we get L*/C=1 henry/uF.

Figure 8.19

There are also commercial IC (integrated

circuits), like the National AF120, that

make easy setting-up the gyrator (Figure

8.20).

Circuits 8.19 and 8.20 differ only for the

position of C, which in 8.20 is exchanged Figure 8.20
with Rj. The previous analysis gives

Z2,=7,2575/(ZyZ4), With Zy= 1/sC. Integrated in AF120 there are Zy;=7,=75=R=7.5kQ, so

that letting Z; =R, we obtain Z;=sRR C=sL", with L*/R ,C=7.5 (henry/ms).

8.10. Capacitance multiplier

The circuit shown in Figure 8.21 behaves as a
capacitance multiplier.

To calculate the input impedance Z;=V,/I; we
must evaluate the input current I; = (V;-V,)/ Z¢.
Because OAL is a follower we have V| =V, and

because OA2 is an inverting amplifier with gain
G=—RO/Ri, w¢E get V2=GV1.
Figure 8.21

38 See the examples of LC filters in Appendix B.
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As a conclusion: I;=V;(1+R/R;)sC, and Z;=1/sC*, where the effective capacitance is
C*=C(1+R/R;). This circuit may be used, with a capacitor R in series to the input, as an RC*

low-pass filter, with the output taken at the node between R and C*.

Another capacity multiplier is shown in Figure

Vi I ;]Rz I2 8.22, where the OA is used as follower, so that

The voltage V; is calculated from the divider

.

T =

Figure 8.22

The input impedance Z;=V,/I; is calculated
considering that I, = I; + I,, that gives
L = (Vi-Vo)/RiH(Vi=V)/Ry =(V; = V,) / R, where R,=R{|[R,. Eliminating V> we obtain
Z;=R(1+1/sR|C)=R+1/sC*, where C* is the effective capacity C* = C(1+R/Ry).

8.11. IC active filters

The state-variable filters may be easily obtained using commercially available as IC . A typical
example is the National AF100, (or the similar Intersil FLTU2), whose internal structure is shown

in Figure 8.23.

Figure 8.23
A possible configuration of AF100 is shown in Figure 8.24, where, ignoring the fourth OA of

figure 8.23 , we obtain the same circuit of figure 8.15.

Figure 8.24
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The current conservation at node A gives: (V,—V;)/R;=(V3-V)/R00(V1=Va) /Ry,
and at node B: (VZ_VA)/RIOOZVA/RQ'
From integrator OAl we get: V,=-V/sR;C=-w;V;/s and from integrator OA2

V3=V, /sRp,C=w;m,Vy/s2, where | =1/Ry,C and w, = 1/R,C. Therefore:

Va == (RqlIRygp)o1Vy/s.
Eliminating V,and V3 in the first equation we get the transfer function for V; (high-pass):
-s’R,,/R,
s + so,R g (RQ”RIOO)/[RIOO (R, HRIOMRIOO)] +0,0,R /R,y

T, (s)

The cut frequency (with C=1nF, R;; =10 k€ ,R;(( =100 kQ) is:

0, =\0,0,/10=10"/1/(10 R, R,,) ,

e.g. for R =10 kQ, Rp,=1kQ, wy=100kHz; the damping factor C is :

=l 10R,, 1.1+10*/R,
2\ Ry 1+10°/R,,

e.g. for Rj=10 kQ2, Ry=1k€2, T=0.5 %; and the gain is G;=R(/R;.

In the band-pass we get G, =Q(R10 /Ri)JIORF1 /R, , with a quality factor Q=1/(20)- in the
low-pass the gain is G3=R;(o/R;.
Note that gain and quality factors may be varied at constant o, by properly adjusting Rg and R; .

With AF100 we need only four resistors to get a triple filter. With three more resistors (and using

the fourth AO of AF100) we may build the notch filter of figure 8.15, as shown in figure 8.25.

Figure 8.25
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9. Switching circuits

When the OA has no negative feedback, or it has a large positive feedback, a small noise voltage
at the input (e.g. offset, line pick-up, switch-on transients...) brings the output to saturation. The
OA works out of the linear region and its response to input voltage may take only two values: V.
or v_ .3

This behavior allows us to use the OA as a switching circuit, i.e. as a comparator. Not all the
commercial OA may be used for this purpose: many models suffer of latch-up, i.e. they get
blocked with output saturated, and to unlatch them we must switch-off the power supply.
Therefore, when designing a switching circuit we must select special OA with rail-to-rail output,
that do not suffer latch-up, named Schmitt triggers or Comparators. Some comparator are

available with open-collector 4%, a configuration that allows to select for saturation voltage (V)

values different from the power supply voltages.

9.1. Comparator

Let us first analyze an OA without negative feedback. We immediately see that it works as a

threshold detector. In fact if we fix one of the inputs at a reference voltage Vy, the output
switches between £V as soon as the voltage applied to the other input crosses the threshold
voltage V. For example, let Vi >0, the
output voltage V , as a function of the
input voltage V; is shown in Figure 9.1.
Within the small range AV = 2V /A,
around Vg the comparator has linear

response, but AV is of the order of
millivolt, so that a small noise around
Vi makes the output unstable: the

comparator oscillates between +V . and

-V

cc*

39 Here we assume for simplicity V+cc =— V7 and [VoMax[=V .

40 See Figure 12.8 of chapt. 12 for open-collector layout.
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9.2. Comparator with hysteresis

The comparator instability around V; may be avoided, by introducing an hysteresis through a
positive feedback. In this case the response, within a small range around Vg, will depend on the
values previously assumed by the input V;. The single threshold value will be replaced by two
threshold values: a lower one, that will switch the output for increasing input voltages, and a
higher one , that will switch the output for decreasing input voltages.

Therefore small oscillations of the input voltage V; nearby each threshold value will not toggle

the output more than once . The larger is AV, named hysteresis width, the smaller is the

comparator sensitivity.

Let wus analyze the inverting

comparator with Vi >0:

The non-inverting input voltage is set

by the superposition of two sources:

the output voltage V, and the

reference voltage Vg, as well as by the

divider (R},R,), i.e. by the feedback )

Figure 9.2

fraction. B =R/(R;+R,).

The threshold voltages are +3V .+ (1-f)Vi. The hysteresis width 2BV . replaces the linear
region. The mean value of
threshold voltages (1-)Vi well
approximates Vy for f<<1.

The non-inverting comparator
with hysteresis (Figure 9.3) is
similar with the difference that
the input impedance, Zi, = Ry
Figure 9.3 R» is here lower than Zip».
This comparator toggles when BV ,+(1-B)V,, =V 1.e. for V; =(Vr£BV )/(1-P)=Vr£R /R, V. .
For $ <<1 the threshold becomes V; = Vy BV i.e. the hysteresis width is 2BV /(1-B)=2pV ..

In the particular case Vi =0, the toggling condition is V;, =+R;/R,V .
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9.3. Bipolar astable multivibrator

If we replace the input signal of an inverting comparator by a complex (RC) negative feedback,
we obtain an astable monovibrator, a type of relaxation oscillator #1.

We first consider the case of bipolar power supply (-V . <V, <+V,.), and we let Vp =0, shown

in the circuit of Figure 9.4.

V, 4
Ve ]
Vo t'
_Voc ------------- ! . !
Vi | | |
T 720 W

Figure 9.4
The negative feedback forces the voltage V; at the inverting input to follow the output voltage
V,,, with the delay produced by the low-pass filter RC.
Because Vi =0, the threshold values are =V , and the time evolution of V; and V, are shown

in the figure 9.4. Let the switch be initially closed, forcing V==V, V,=+V_ and V,=+pV_.

ce?
The capacitor is initially charged, and a current i =2V _/R starts discharging it through the
resistor R when the switch is opened. When the voltage V| reaches V, =+BV,_, the comparator

output switches to V, = -V changing the threshold voltage into the new value V, = V. : we

assume this instant as t = 0.

At this time V,(t) becomes the exponential function decaying with time constant RC, and
boundary conditions : V(0) =+8V_. and V(o) =-V; therefore we may write:

Vl (t) = (BVCC +VCC)eXp {_t/RC} _VCC'

When V,(t) reaches the threshold V, = -V, again the comparator switches to V, = +V_.: we

ce?
name this time t = t. The new exponential law becomes:

V() =BV, = BV TV )exp{—t/RC} -V,
from which we get t = RC In{(1+p)/(1-f)} = RC In{1+2R /R, }.

For B<<1, (i.e. R;<<R,) we have 1= 2RCR//R,.

41 See for example http://en.wikipedia.org/wiki/Relaxation_oscillator
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At the time t=t the comparator switches again, the voltage V,(t) increases again towards +V

and the threshold is again V,=+BV_.. It is easy to see that the next switch of the output voltage

occurs after the time ©’=t: the output signal V (t) is therefore a square-wave with period T=2t, or

frequency f=1/T=1/2t. For f <<1 we get f=R,/4RCR,, i.e. a frequency linearly increasing with
R,, or a period linearly increasing with R, C, R;.

The square-wave symmetry (i.e. T = 1) is due to the power supply symmetry (V' . = V) and to
the choice Vi=0. In case of non-symmetrical power supply we may add a double zener in
parallel to the output load and a resistor R, as shown in Figure 9.5.

When the OA output V' reaches V' or V., the oscillator output V, is forced to +V,.

R :: E R The voltage drop V -V, or V, - V_ across
R the resistor R, removes the effect of non-

symmetric power supply.

Vo
Ro If we need a pulser with ' # T we may replace
the negative feedback resistor R by a parallel of
v
RI 2 two resistors in series with opposite diodes,
L (see insert in Figure 9.5).
. C R
Figure 9.5 AL—I_“
= +V,
Vi e
AN — Vo
9.4. Unipolar astable multivibrator +V,, + —O
R Rj3
If only unipolar power supply is available (V' , 0), )
or if we need positive output pulses we may use the R) DL V2
circuit of Figure 9.6. L
Figure 9.6

In the general case (R; # R, # R;) the voltage V,

takes the threshold voltages V, e V, for output V,=V_ or V,=0:

V2+ = Vcc R2 = VCC RZ(RI + R})
R, +R1||R3 R R, +R,R, +R R,

V; = VCC R2 ||R3 = VCC R2R3
R, +R,|R, RR,+R,R,+RR,

In the simpler case R;=R,=R;=Rweget V, =3V_e V, =1V,

cc*
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With close switched: V; =0 and V=V . When the switch is opened, the capacitor starts to be
charged through R and the voltage V, grows, crossing the threshold V, at the time that we
assume to be t =0. The comparator toggles forcing Vo=0and V, =V, .

The time evolution for V| becomes V(t) = V, exp (-t/RC). The next comparator toggle occurs at
t = T, , when V; reaches the lower threshold V,: exp(—t;/RC) = V,/V;= R3/(R;+R;), that
gives:

T;=RC In (1 +R/Ry).
At this time (we again set as t=0) V=V, and the voltage V|, starting from V, , grows toward

V. and the next comparator toggling occurs at t = T, . The time evolution is now V(t)=(V, -

V..) exp(-t/RC)+V_, that gives for the positive pulse width t,:

ce?

T, = RC In[(V; =V A Vi—V.)]=RC In(1+R,/Ry).

For R;=R, we get a square-wave (T, =T;).

The same circuit, with power supply (0, =V ) gives negative pulses.
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10. Self-oscillation

Self-oscillation in OA 1is a spontaneous oscillation of the output voltage in the absence of input
signal: it may occur when there is a positive feedback.

Positive feedback may be provided by a fraction of the output signal fed to the non-inverting OA
input, but also a fraction of the output signal fed to the inverting OA input, if there is a phase shift
of .

Such positive feedback may also be non-intentional: it may be the result of capacitive coupling
between output and input or it may be due to a ground-loop*? in the power supply circuitry; in
these cases the oscillation is undesired, not controlled and it produces instability of the signals.

If we properly adjust the positive feedback, however, we may obtain stable and controllable

oscillation:

10.1. General remarks

Let us consider a loop made by an amplifier with gain BV,
A and a total feedback fraction f3. A
Suppose we inject a signal into any point of the

closed-loop: we’ll find that signal amplified of the B Af Vo

factor Af after one loop-turn. Both the gain and the

feedback fraction are generally complex function of Figure 10.1

frequency: A = A(s) B (s), with s=jw.

Therefore also the loop-gain AP is a transfer function of the frequency: AB=a(s)+jb(s) where a
is the real part and b is the imaginary part; and also we may write AB=a+ jb=+/a’+bZe!
with ¢ = arctan(b/a). So that when the imaginary part b=0 the phase shift ¢ of A is zero and
the amplitude gain |AB|= a =real part of AP.

For |A(w)B(w)>1, and ¢(w)=0, any noise inside the loop will trigger a signal at frequency o that
will increase with time. If |A(w,)B(w,)[=1, and ¢(w,)=0, the signal at frequency w, stabilizes and

this phenomenon is named self-oscillation.
Self-oscillation, therefore, is not possible for any frequency: two equations must be satisfied: :

Im[A(wg)B(wg)]= 0, which means zero phase shift, and Re[A(wg)f(wy)]= 1, which means that

the amplitude loop-gain equals one. In fact for Re{AB}<1 the oscillation dies-out, and if

42 See for example http://en.wikipedia.org/wiki/Ground _loop %28electricity%?29
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Re{AP}>1 the OA goes to saturation, the signal becomes distorted and the circuit analysis

become more complex.

10.2. Wien-bridge sinusoidal oscillator

A simple example of sinusoidal oscillator, named Wien-bridge A [ Ro
oscillator, is shown in Figure 10.2. IR:} -

1
Within the ideal OA model, gain is A = 1+R/Ry: it is a real B +

number, i.e. it does not depend on w.

The feedback  fraction, instead, is a complex function of w (the

1
' | —
low-pass filter transfer function). C2
R3
Cs3 B

From relation PB=(Zc3||R3)/(Ze3||R3+Ry+Zp) we get

joR,C, )
- S , with .
(jo/w,)"+ jo/n,Q +1 Figure 10.2

B(w) =

W, = 1/(R,R,C,C;) and Q=1/[wy(R3Cy+R,Co+R3C3)].
The condition Im[AB]=0, with A real, becomes Im[B]=0, an equation that is easily solved

noting that the solution is obtained by imposing zero real part in the denominator of 3 (because
the numerator is imaginary), and, noting that (jo/mg)? = —(w/mg)?, finally we obtain the solution:
w=w. For w=w the feedback fraction becomes:

B(®w,)=R,C,w,Q=1/1+R,/R;+C,/C,). [10.1]
The oscillation become stable for |AB|=1, i.e. when R /R, =R,/R,+C,/C,.
The simple case is for R,=R3=R, C3=C,=C, corresponding to $=1/3 and Q=1/3, imposes
A=3,1e.,R,=2R; so that the oscillation frequency is f, = 1/(2nRC) .
Another simple choice is R3=2R; and C, =2C; (i.e. p=1/2, Q=1/4) imposes A=2,i.e. R,=R;.
We are free in setting the values in the feedback network, provided that we satisfy the conditions
[10.1] and |AB|=1. At high frequencies we must account for the frequency dependence of the
open-loop gain A (w), which decreases with w.
A similar circuit may be obtained by replacing the capacitors in Figure 10.2 with inductances. We
would get 1/f = 1+Ry/R3+Ly/Lstj(wLy/R3—Lo/R3m), (wg)? = (RpR3/LyL3); for R=R,=Rj3, L=L;
=L; the oscillation frequency would be f,=R/2nL.
The closed-loop gain value is critical: it must be exactly AB|=1. Therefore a stable oscillator

normally requires an automatic gain stabilization (note that the amplitude of the voltage

oscillation does not enter explicitly into the equations we used above).
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This may be achieved using non-linear passive elements in the feedback network, as in the

circuits of Figure 10.3.

Figure 10.3

In both cases we exploit the temperature dependence of a non-linear resistor R(T): because the
power W=V2/R dissipated on R(T) increases with the voltage amplitude, also the temperature
increases. In the case a) of PTC (Positive Temperature Coefficient) thermistor (it might be simply
a filament lamp) the result is OR/0V>0, so that the loop-gain A=1+R /R(V) decreases.

In the case b) with NTC (Negative Temperature Coefficient) thermistor we have 0R/0V<0, and
the gain is A=1+R(V)/R;.

Assuming for example 3 = 1/3 must be A =3: therefore , at room temperature we should choose

for the PTC : R,=2R;; and for the NTC : R; =R;./2.

Another Wien-bridge oscillator circuit is shown in

Figure 10.4. Here the automatic gain control is Ri Ro R A

provided by the non-linear behavior of the diodes _['
placed in parallel to Ryf. At higher oscillation

voltages the diodes start conducting, thus decreasing Vour
ou

the effective feedback resistance, and the closed-

loop gain (that is initially set to A=3 by adjusting

the potentiometer R). Figure 10.4

10.3. Phase shifter
A phase shifter is an all-pass filter, that does not affects the signal amplitude |T(jw)|=1, while

introducing a phase shift that does depend on frequency.

Two examples are shown in Figure 10.5.
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1 | —— | I 1 I
L I 1 I 1 I 1 | p—
RO Ro RO RO
o— —-
Vin Vi -
-O in
_I + Vout -+ V-(gt
C R
R _— C
a) T b)
Figure 10.5

The circuit a) produces a negative phase offset and the circuit b) a positive phase offset: note that
the two circuits differ only for the position of R

and C. We analyze both , redrawing the circuit in

the general layout of Figure 10.6. Voltage V; is ! I { —
- : Ro Ro
the superposition of the source Vi, amplified —1 Vi 0 O
(inverting) and of the source Z,/(Z1+Z;)Vin Z1 + -O
\Y%
amplified +2 (non- inverting). ot
72
The transfer function is :
T(w) = ﬂ_l = il_J‘—wRC = 4120, Figure 10.6
Z,+7Z, 1+ joRC

with the sign — in case a) and sign + in case b). The phase shift is 2¢ =2arctan(wRC). At the cut
frequency wg = 1/RC the phase shift is £m/2, i.e. the output signal is in quadrature with respect to
the input signal. The phase offset in case a) decreases with w from +x to zero and increases in

case b) from zero to —m.

10.4. Double shifter oscillator

In Figure 10.7 OALI is an inverting amplifier: |A(jw)| = 1. The other two OA may be seen as the

feedback network made by two phase cascaded shifters.

I — — 1
R'o R R
| | — ) —? _ = _
Ro + 42 43
N =
R1 R1'
- —— _— C2'

Figure 10.7
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With proper choice of the CR dividers the two shifters may be set for a total phase offset of  at
some frequency wg producing self-oscillation.

The particular choice R{'=R, and C,'=C,;, gives for V;, a quadrature output, ad for V3 an output
in phase opposition with respect to V. The automatic gain control may be achieved by a double

diode in parallel to R".

10.5. Quadrature shifter

A phase shifter that provides a constant phase
shift of m/2 for any frequency is shown in
Figure 10.8.
The voltage V| = ViWZ/(Z+Ry) is amplified
with gain G=1+Z./R;, so that the transfer
function is:

Figure 10.8
1 1+sR,C,

sR,C, 1+sR,C, ~

T(s) =

that, for R{C; = R,C; = RC, becomes T(s)=1/(sRC). This circuit is a non-inverting integrator
giving an output shifted by ¢ =m/2 with respect to the input. For a constant input amplitude, the

output decreases linearly with frequency: [T(jw)|=1/(wRC).

10.6. Double integrator oscillator

Adding to the previous circuit (OA2) an [ .
inverting integrator (OAl) as in Figure % : C
10.9, we obtain a quadrature oscillator. " Ci f‘#} —_
. - 2 O
The circuit may be seen as figure 10.1, ~q + V,
RI |4 — 1 Q
where each one of the two AO may be R
either the amplifier (A) or the feedback = \£ -_r
twork (B).
network () Figure 10.9

Letting R'= R and C' = C, we get

AB =1/(rR1C{RC), which gives an oscillation frequency ®, =1/,/R,C ,RC . Note that the two
outputs Vg and V, are in quadrature.

The automatic gain control may be achieved placing a double diode in parallel to C; and the

amplitude may be adjusted by the potentiometer R’ .
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10.7. Phase shifter oscillator

Figure 10.10 shows the oscillator known as
phase shifter oscillator. 1t is made an active
differentiator 43 V, = A(s)Vi= —sRy,C Vi
whose negative feedback Vi = P(s)V, is a

double high-pass filter made by two passive

differentiators (we neglect here the diodes and i
Figure 10.10

Rythat set the automatic gain control).

The transfer function B(s) is the product of the two transfer functions Ti(s)=V2/V, and
T2(s)=V1/V3. Because V1 is the output of the divider (C',Z;), (where Z, is the parallel of 44 R' and
C") we get To(s)=sR'C'/[1+sR'(C'+C")]. Choosing C=C'=C" and R=R', we have more simply
Ta(s)=sRC/(1+2sRC).

Because V| is the output of the divider (C, Z1), (where Z; is the parallel of R with C' in series to
Z») we obtain T =sRC(1+2sRC)/(1+4sRC+3s2R2C?).

The condition |AB| =|A(s)T1(s)Ta(s)=1 may be written: 1+4sRC+3s2R2C2 = —s2R2R,C3 or
Ry, = [40RC—j(1-3/m2R2C2)]/w3R2C3; the left side of the last equation is a real number:
therefore the imaginary of the right side part must be zero: i.e. ®w?R2C2=1/3.

This transforms the condition |AB|=1 into R, = 12R , and oscillation frequency wg = 1/(RC\/§ ).
One should choose Ry, slightly larger than12 R to start oscillation: the two diodes shown in Figure

10.10, and proper trimming of the OA feedback resistance will adjust the oscillation amplitude .

43 See § 8.2.
44 Note that non-inverting input is a virtual ground.
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10.8. Square/triangular wave generator

One comparator and one integrator in a closed-loop as in Figure 10.11 give a generator of

triangular wave and of square wave.

Figure 10.11

The OA1 comparator toggles when the voltage V, crosses the zero-voltage threshold value set as
reference at the inverting input, and the OA2 integrator transforms the constant V, output into a
ramp. Let us follow the time evolution of the voltages V, and V-, starting from Vo =+V

the output V1 of the inverting integrator decreases linearly with time: V(t) = V(0)-V . t/RC.
The voltage V is the superposition of sources V and Vi Vy, =VRy/(R1+R)+VoR1/(R11R),
and the comparator toggles when V, =0, i.e. for V1=-VR/R,, (note that we must set R, >Rto
avoid saturation of Vy). This gives the starting value V(0) for the positive ramp of V(t)
(because now Vo =-V): Vi(t) = =V Rj/Ryt V t/RC. The next comparator toggling occurs for
Vi(T/2) =V.Ry/R,, at the time t=T/2 (the half-period of the square-wave):
V..Ri/Ry=-V . R/Ry+ V. T/2RC, or 2R;/R,=T/2RC, that gives T = 4RC(R/R»).

The triangular wave amplitude is 2V R /R, with frequency f=1/T=(R,/R;)/4RC.

The circuit of Figure 10.11 has two drawback: the OA1 input offset voltage Vs gives an offset
to the triangular signal, and the OA2 input offset voltage Vs makes not symmetrical the square-
wave.

An improved version of this circuit is shown in Figure 10.12, where offset adjustment, amplitude
stabilization and symmetry control have been included. The frequency is set by the potentiometer

Rp, the amplitude by the potentiometer Rg. The potentiometer Ry corrects the Vi offset and R,
the square-wave symmetry . Frequency increases by decreasing Rp and the amplitude Vy

increases by decreasing Rg.
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Figure 10.12
Letting K=(Ry+tRg)/(R1+R2+Rg) the peak-to-peak amplitude of the triangular wave is

Vrpp = 2Vz(1/K~1), with mean value V/K, where V| is set by adjusting the potentiometer Rr.
The frequency is f = [1—-(V2/V,)2]/4[(1/K—1)(R+Rg) C], where V| is set by adjusting the
potentiometer R, s0 that, for Vi =V,=0 and Rg=Rr=0 we get f=(R,/R;)/4RC, as above.

An equivalent circuit is drawn in Figure 10.13 with an inverting comparator (OAl), with

hysteresis and reference voltage Vi = VoRo/(R1+Ry), plus a non-inverting integrator (OA2).

Figure 10.13
The superposition principle gives V =VyotVyr with: Vio=VoR|[Z)/(R+R]Z,), and
Vit =ViR/(R+R||Z)), i.e. : VXQ=VQSRC/(2+SRC) and V1 =V(1+sRC)/(2+sRC)

The integrator OA2 amplifies the voltage V, with gain G=2, so we obtain

X
Vi=2(Vy1 1 Vx@)Z2[V1(1+sRC)+ VosRC]/(2+sRC), that gives the transfer function of AO2:
V/Vo = 2/sRC, predicting the time evolution of Vi : Vi(t) = V(0)+(2/RC) j Vdt .

Let us assume t=0 when the comparator switches from -V, to +V.: at this time the threshold
voltage is Vi =V Ry/(R;+Ry) = V1(0). The voltage V start increasing linearly with the law:
V)=V [2 t/RC-Ry/(R; +Ry)].

The next comparator toggling occurs after an half-period T/2, when V{(t) reaches the positive
threshold: V; =+V Ry/(R;+Ry) =V (T/2).

The period is therefore T=2RCR,/(R;+R5), or T=RC for R;=R,.
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10.9. Quadrature square/triangular wave generator

By cascading two stages of the previous circuit (comparator+ integrator), as in Figure 10.14, we
get two square-waves in quadrature and two triangular-waves in quadrature.

The signal V, has T/4 delay
with respect to Vi, and V1,
delays T/4 with respect to Vi .
For T1=R1C; # T>=R,Cj, the

amplitude of the two triangular

waves 1s different and the

squarce-wave is no morec

symmetric; e.g. for To>T| we
Y s 2o Figure 10.14
have V1;> V.

10.10. Voltage to frequency converter

Frequency may be modulated by a voltage

using a voltage-to-frequency converter as that
shown in Figure 10.15. Here the output signal

V3 is made of pulses repeating at the frequency

f, proportional to the input voltage V;.

The circuit is made by an inverting integrator

(OAl) and by a non-inverting comparator

(OA2) with hysteresis and zero reference

voltage Vy (see § 9.2).

Figure 10.15

Let be t=0 the time at which V5 switches from -V to +V.. Because V=0, it toggles when its
input voltage V,(t) reaches the positive threshold V(R /R,); the diode is reverse biased (V41s a
virtual ground), and OA1 integrates the current Ic = I = V;/R, that gives at the output :

Vi) =V1(0)-t(V;/R)/C =V (R{/Ry) - t(V;/R)/C [10.2]
The comparator output switches back to -V after the time T, when V| (t) reaches the negative
threshold V(T;)=V_R{/R,.
The equation [10.2] becomes: —V..R;/Ry= V .(R{/Ry) — T (V;/R)/C, that yields the solution
T, =2V_.RC (R;/Ry) /V;.

Let now be t=0 the time at which V3 switches from +V . to -V, .
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We have V;(0)=-V_ R /R, and because the diode is forward biased OA1 integrates the current
Ic =I"-1"=V,;/R-V_/R3, giving at the output V(t) = -V .(R;/Ry) —t (V;/R-V_/R3)/C
If we choose R>> R3 we may neglect I'* =V;/R, writing:

Vi)= -V (R{/Ry) +t (V ./R3)/C [10.3]
The comparator input V(t) will cross again the positive threshold V(R /R,) at the time T, .
The equation [10.3] becomes: V_ R{/Ry=V . (R;/Ry)-T,(V../R)/C, that yields
T, = 2R3CR /Ry <<Tj.
The signal period is T= T{+T, = T}, and the frequency f = 1/T =V;R,/(2V_.RCR;), which is
proportional to V.. A better approximation which takes into account Ic = I'— I~ gives:

f= kl(Vi/VCC) +k2(Vi/VCC)2’ with kl =2R2/(2RCR1) and kz/kl =R3/R <<1.

10.11. Frequency-to-voltage converter

The inverse process, i.e. the frequency-to-voltage conversion, may be implemented by the circuit
shown in figure 10.16, a basic frequency meter for generic a.c. signals with zero mean value

Vi'(t).

Figure 10.16
In figure 10.16a the OALl is a zero-reference comparator, with a twin zener load, that transforms
the input signal Vi (t) into a squared signal V;(t) of constant amplitude 2V, peak to peak.
At each rising edge of the squared input signal V;(t) a charge q =2V,C is transferred from the
capacitor C through the diode D1 into the capacitor C; and the same charge is restored into C
through the diode D2 at each falling edge of V,(t), because D1will be reverse-biased.
This charge transfer corresponds to an average current <i> = q/T = CV, f, where T=1/f is the
average period of the signal V;(t) with average frequency f.
The capacitor C; discharges through the resistor R, during the time between falling and rising
edge, but if RC;>>T, the output voltage V is well approximated by: V,=—-RCV;{f. To have a

frequency meter with positive output we simply revere the polarity of both D1 and D2 diodes.
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11. Phase sensitive detector (lock-in)

The lock-in amplifier is a device that is frequently used to extract weak signals from background
noise. Noise sources may be electromagnetic fields due to line power supply or radio-frequency
broadcasting, but also acoustical pick-up, thermal noise, shot noise or flicker noise®>.

The line-noise, due to poor shielding or to ground-loops, has Fourier-components at the line-
frequency (50Hz or60 Hz, and multiples). The thermal noise (also named Johnson noise),

depends on the source resistance R , on temperature and on the band-width B: its root-mean-
square voltage amplitude at room temperature is VRMssz =104 +RB (WV) . The shot
noise, due to the quantum nature of electric charge, depends on the current I and on the band-
width B; its root-mean-square current amplitude is IRMSZ\/m =104 \/ﬁ(uA). The flicker

noise (also named 1/f noise) decreases with frequency so that it is practically negligible above
few tenths of Hz.

We may filter the noise by using narrow band-pass filters tuned at the signal frequency w,. The
higher is the filter quality factor Q=wy/(wy—w)the more selective is the filter; however the

maximum value for Q=100 is limited by instability problems: a slight drift of the central filter
frequency (due to temperature changes or aging of components) produces in fact strong signal
damping.

An alternative solution is to lock the filter central frequency to the signal frequency: this is the
lock-in amplifier technique. A lock-in amplifier needs a reference signal Vy that is synchronous
with the signal to be detected Vg; such signal may be found more easily than it could appear at
first sight: quite often in fact the weak signal to be extracted from background noise is produced
as response to an excitation signal that will be available as reference signal. In case of d.c. signals
one may always modulate*6 them by "chopping" .

The lock-in output is not sinusoidal signal (as for tuned band-pass filters output) but a d.c. voltage
whose value is proportional to the amplitude of the detected input signal.

The main advantage of the lock-in is the very high Q-values (of the order of 10°) even at very low

frequencies, where traditional tuned band-pass filters become very expensive .

45 For a nice brief description of electric noise see: Electronics for the Physicist, C.G.Delaney, chapt 11. We here
only recall that thermal noise is due to the brownian motion of electrons, shot noise is due to the statistical
fluctuations of the number of discrete charges flowing in a time unit, while flicker noise may be produced by
various different processes.

46 Choppers are frequently used for example in optical benches where the d.c. light beam crosses a rotating disk
with holes, that acts as a on/off switcher at a given frequency: a photodetector sensing part of the beam emerging
from the perforated disk provides the reference signal.
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11.1. Lock-in with synchronous switch

Let us consider a sinusoidal signal Vg(t)=Vgysin(wef) with angular frequency w,, and amplitude
Vsu, Which is buried in a background noise Vi with a broad frequency spectrum. The noisy signal

may be seen as the superposition Vg+Vy of the signal Vg and the noise Vy.

Figure 11.1

Figure 11.1 shows the basic drawing of a lock-in made of a synchronous switch and a low-pass
filter: the signal to be processed V¢ +Vy is chopped by a voltage-controlled switch D and fed to a
low-pass RC filter. The switch is controlled by the reference signal Vi synchronous with Vg, so
that it is passing the signal during the positive half-wave of Vg and it shorts to ground the filter

input during the negative half-wave of V. This is substantially an half-wave chopper.

Figure 11.2

The signal shape Vs+Vy (before the switch) and V, (after the switch) is sketched in figure 11.2a,
where is shown also the waveform of Vg, that in real case is hidden by the noise. After the low-
pass filter the mean value is <V > = Vg,/m because the mean value of Vy is zero, if we make the
reasonable assumption that the noise has no component synchronous with V.

If we set a phase lag between V; and Vy, i.e. the switch is triggered with a delay t,, (or a phase
shift ®=w,t;) with respect to Vg, the output voltage <V,> depends, not only on Vg, but also on

®. An example is shown in figure 11.2b, and an analytic expression of the output is :

+T2 _ t+T/2
T L e A R

cosd [11.1]
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Relation [11.1] shows that the lock-in output, at constant Vg, measures ®, which explains the

name of "phase sensitive detector" for the lock-in amplifier.

11.2. Lock-in with multiplier

A different lock-in structure is shown in figure

Vs o—] Vi —— v
11.3. Here the block marked by x , replacing Ve X ILIJ_ g v
the synchronous switch of figure 11.1, is a I
multiplier, i.e. a device that gives an output Figure 11.3 )

voltage V(t) proportional to the product of the
input voltages Vs(t) and Vr(t): Vi(t)=k Vs(t)x Vr(t).
Frequently, in the commercial IC multipliers, the value of the factor £ is 1/10, but here we'll
assume k=1, for simplicity.
When Vg(t) and Vg(t) are sinusoidal functions: Vs(t)=Vsusinwgt and Vr(t)=Vrmsinwgt , we get:

V, (t) = VeuVru sinwgt sinmgt = Vg Viem[cos(ws—wg)t — cos(mgtwyg)t]/2 [11.2]
where we used the Werner trigonometric formulas to compute the sinwst sinwgt product.
The output signal V,, has two components , with frequencies that are the sum and the difference,
respectively, of the two frequencies of input signals.
In the particular case wg=wr=w,, with a phase shift ® between input signals, we get:
V., (t)=VeuVru[cosP —cosLQwt+P)]/2.
Here the output has a d.c. component ("zero-frequency term") that depends on the phase shift, and
a component that is the second harmonic of the signal frequencyw,.
At the low-pass output (under the condition RC>>1/2w,) we get

<V >=(VsuVrw/2) cos®. [11.3]

Relation [11.3] gives the same dependence on @ as relation [11.1], but here the lock-in output
depends also on the amplitude Vi, of the reference signal. A reliable measurement of the
detected signal amplitude therefore requires not only a stable phase shift but also a stable
amplitude for the reference signal.
The transfer function of this lock-in has the spectrum shown
in figure 11.4. The bandwidth Aw of the band-pass filter,
centered at w,, is determined by the time constant RC of the

low-pass filter.

Figure 11.4
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This means that the noise components with frequencies w; , with |0;i—w,|/<1/RC, modulate the
output voltage <V,. One might see these components with frequencies very close to w,, as quasi-

synchronous components equivalent to a synchronous signal with phase shift slowly changing
with time.
We may analyze again the circuit of figure 11.1 assuming the switch to be a multiplier with a

reference signal that assumes values 0 and 1 (a square-wave with mean value <Vy>=1/2).
A generic periodic signal, with period T=2m/wy may be written in terms of Fourier components :

V(t)=a,+ ian sin(noyt+P ) , [11.4]
where a, is the mean value ann(?an are the Fourier amplitudes.
In our case a;=1/2, the even amplitudes are zero and the odd amplitudes are a,=2/mn. Therefore
Vx may be written:

Vo) =5+ 2[sino0yt+4sin30,t+LsinSmyt+..] , [11.5]
and the output signal V(&= V(?) * Vi(¢) becomes:

V,(t) = %VSM singt +%VSM[sin0)St SINyt+singt sin3wyt/3+...]. [11.6]

If the reference signal Vy, is synchronous with Vg, i.e. wrg=ms=w,, in relation [11.6] survives a
single d.c. term, and for , RC>>1/mw, we obtain at the filter output for <V,> again relation [11.1].
We note that if the noise Vy includes a d.c. term Vg, i.e. Vy+ V=Vt Vi () + Vgusinw,t, then

the offset will appear also at the lock-in output :

<V, >=1V +1V,,,cosD. [11.7]

Relation [11.6] shows that all the odd harmonics (2n—1)w, of Vg contribute to V (t), so that the

transfer function of this lock-in has the spectrum shown in figure 11.5.

The bandwidth Aw of the peaks centered at 0, wy, 3wy, SM,,... is determined by the time constant
RC of the low-pass filter : Aw=2/RC. This means that the noise components with frequencies wj ,
with |wi—~(2n—1)w,|<1/RC, modulate the

output voltage <V,.

The lock-in with (0,1) multiplier may be

seen as a parallel of infinite numbers of

lock-ins with sinusoidal multiplier and

with reference signals made by odd

harmonics of the signal to be detected. Figure 11.5
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The (0,1) square wave reference method introduces more noise band-pass windows with respect

to the sinusoidal reference method. However it is easier to stabilize the amplitude of a square

wave than the amplitude of a sinusoid.

The value of the time constant RC is limited only by the required response time T (t=5RC), so

that choosing RC>>1/mw, we may obtain very high Q values (w,/Aw=2RCw, up to 103).

11.3. Lock-in with multiplier £1

Using as reference signal a symmetric
square wave (e.g.£1) we may get a further
improvement.

Figure 11.6 shows a modification of
figure 11.1, where two amplifiers
followed by a voltage controller switch
behave as a multiplier by + 1.

The analysis of the behavior of this circuit
is the same as that made for circuit of
figure 11.1, with the difference that in the

Fourier series [11.4] we have now ay,=0
and a, =4/mn, so that the mean value of the

product V,(t) = Vg(t) Vi(t) becomes (even

in presence of an offset Vg in the input signal):

<V, = ;VSM cos® .

Figure 11.6

[11.8]

The transfer function of this circuit has the spectrum depicted in figure 11.7, where the peak at

zero frequency disappears, allowing much better rejection of offset and flicker noise from V.

Figure 11.7

In Figure 11.6 the voltage-controlled
switch may be implemented by a
relay, or a pair of FET or CMOS
Analog Switches 7.

A simpler version of circuit 11.6 is
shown in Figure 11.8, where a single

OA (see § 4.5) plus a voltage-

controlled switch implements the required multiplier (=1 square wave).

47 A brief description of Field Effect Transistors (FET) is given in Appendix A.7; for Analog Switches see §13.3.
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When the switch is ON the OA is an inverter (G=-1), when the switch is OFF the OA is a
follower (G = +1). The accuracy of this circuit is limited by the non-ideal characteristics of
electronic switches (R, #0 and R ..#%0): in case of CMOS the value of R is of the order of
fractions of kQ and for R .. several MQ. Therefore the resistor R, must be selected in order to

satisfy the conditions R, <<R, <<R_;.

Figure 11.8

Considering Figure 4.7 and Figure 11.8, the gain becomes (accounting for the finite values of
R, and R .): G =[2R/(R,+Ry)—1]x =1 or G"=[2R /(R ¥R ) — 1]~ +1.

To improve the approximations we may use two analog switches, as shown in Figure 11.9.

Figure 11.9

Here the two switches are driven in phase-opposition by the two comparators (one inverting and
one non-inverting) with reference voltage at ground.

The single channel chopper shown in figure 11.9 may be replaced by a twin-channel chopper
followed by a differential (low-pass) amplifier as in the circuit shown in Figure 11.10.

Here the quad analog switch is driven in phase opposition by the two comparators so that the
input signal Vg is alternately fed to the differential amplifiers inputs every half-period. This
configuration is particularly useful when the source signal Vg is floating (not referred to ground
voltage) : in this case two wires will feed the differential signal (V's—Vs) to the analog switch

inputs.



79

Figure 11.10

Another configuration is shown in Figure 11.11, which is essentially a full-wave chopper that
duplicates the circuit of Figure 11.1, with a differential amplifier that reads the voltage difference

at the outputs of the two RC filters.

Figure 11.11

The two resistors named R may be replaced by a single resistor (R) if RonC >>1g, where T is the
switching time of the two analog switches (to avoid discharging the capacitors during the fraction

of tg when the two capacitors are shorted by 2Ron).

11.4. Synchronous filter

Another circuit that may efficiently increase the signal-to-noise ratio is the synchronous filter
shown in Figure 11.12. This circuit differs substantially from a lock-in: it gives an output that is a
square wave synchronous with the signal Vs to be detected, and with an amplitude proportional

to the Vs amplitude.

Figure 11.12

If w, is the angular frequency of the V, the time constant RC of the two low-pass filters must
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satisty the relation RC >> 1/w, , while time constant R,C, of the high-pass filter, feeding the output
non-inverting amplifier (and deleting eventual offset), must satisfy the relation (1/R,.C,)<<w, .

The output square wave V (w, ) has a peak-to-peak amplitude equal to 2|Vs|.

This circuit is often used as a chopping preamplifier in sophisticated lock-in circuits
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12. Digital electronics: elementary notions

This chapter offers a fast outline of the basic elements that may be found in digital circuits: only a
small fraction of the large number of IC devices commercially available will be analyzed.

This brief digest should however be sufficient to give at least an idea of the working principles of
most of IC digital devices and to provoke some curiosity into the reader who might deepen his

knowledge elsewhere 48.

12.1. Logic circuits

Digital logic circuits are those circuits where only two stable states are possible in any point of
the network: e.g. a transistor which is ON (saturated) or OFF (not conducting) or a diode forward
or reverse biased,...

Normally we consider voltages, not currents, and we define a state as "high" ("H" or "TRUE", or
“1”) when the voltage level is above some high threshold value, and we define it as "low" (“L” or
"FALSE", or “0”) when it is below some low threshold value.

In the logic circuits made with bipolar transistors (TTL =Transistor-Transistor-Logic) 4° that are
powered at +5 V high threshold value is about +2.0V and the low threshold value is about +0.8
V. In the logic circuits made with CMOS FET (Complementary-Metal-Oxide-Semiconductor
Field-Effect-Transistor) the threshold voltages depend on the low Vgss and high Vpp bias
voltages. Normally Vss=0V, and Vpp may be any value between +5V and +15V: generally we
choose Vpp=+5V or +12'V.

We must distinguish the input threshold values from output stable values: a margin must be
provided to warrant proper working in presence of noise, temperature changes, manufacturer’s
tolerance... This means that the minimum output voltage in the H state of any device must always
be higher that the high threshold input value for any device; and the maximum output voltage in
the L state of any device must always be lower than the low threshold input value for any device.
A diagram with the limit values for the input/output threshold voltages in TTL and CMOS

circuits with Vpp =12V, is shown in Figure 12.1

48 More detailed discussions may be found in Microelectronics, by J. Millman and A. Grabel, or in in TTL
Cookbook or in CMOS Cookbook, by D. Lancaster, or in Digital Electronics by W.G. Young.
49 Se for more details http://en.wikipedia.org/wiki/Logic_gate
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Figure 12.1
When the voltage at input has a value within the range marked with a question-mark the device
may detect the input signal either as "high" or "low", so that the state of its output is random.
Any complex digital circuit may be split into basic blocks named logic gates. The basic gates are
of three kinds : NOT (inverter), AND and OR; the corresponding graphic symbols and behavior
(truth tables) are shown in Figure 12.2.

e 3 ) 3

NOT AND OR
A[B[X A[B[X
AlX _ 0/0]0 0/0]0
0] 1] X=A 0/1]0|X=AeB 0|1|1|X=A+B
110 1100 T]0]1
111 T1]1
Figure 12.2

The matrices in the lower part of Figure 12.2 are named truth tables and they define the behavior
of each gate, i.e. the relation between the output logic value X and the given values of inputs A
and B. For example: if the output X is the result of "A AND B" (also written as "X = A*B"), this
means that X is "high" only when both A and B are "high" at the same time.; if X=A OR B (also
written as "X =A+B", this means that X is "high" when A is "high" or when B is "high".

A ] A
=D EID

NAND NOR
A|B X A|B X
01011 0011
O|1[1] X=AeB 010 X=A+B
1[0]1 100
1[1]0 1[1]0
Figure 12.3

A bar placed over a logic variable symbol means its logical negation , e.g. if A is "high" , then

A (=A negate) is "low". In the graphic symbols the negation is marked by a small circle at the

gate output, which indicates an added NOT gate. For example adding a NOT to the OR output we
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get a NOR gate, and adding a NOT gate to a AND gate we get a NAND gate, whose truth tables
are shown in Figure 12.3.

Using the truth tables we see that a NAND gate may be made by two inverters added at the OR
inputs, and a NOR by two inverters added at the AND inputs. These equivalences, shown in

Figure 12.4, are the De Morgan theorems.

Figure 12.4
Another gate frequently used is the EXCLUSIVE OR, defined by relation A@ B = A *B+A+B
and by the truth table in Figure 12.5; it is made either of 2 NOT + AND + OR, or of AND +2
NOR, or NAND + AND + OR:

Figure 12.5
A NAND gate with the two inputs shorted, or one input "high" is a NOT gate un inverter. Using
two NANDs we may get one AND, with three NANDs we may get one OR, with four NANDs
we may get one NOR and with six NANDs we may get one EXCLUSIVE-OR, as shown in
Figure 12.6.
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X=AeB NOR EXCLUSIVE OR
Figure 12.6

This proves that any logic circuit may be made by NAND gates only. Figure 12.7 shows that any

circuit may also be made of NOR gates.

X

X=A+B AND

X =A+B NAND
Figure 12.7

The analysis of logic circuits may be made easier 3° using the identities shown in table 12.1.

AeA=0 A+A=1 A+B =AeB AeBeC=Ae¢(Be(C)
AsA=A A+A=A AeB=A+B A+B+C=A+B+C)

Ael=A A+l=1 A+AeB=A A+BeC=(A+B)e(A+C)
Ae0=0 A+0=A A+AeB=A+B AeB+C)=(AeB)+(AeC()

Table 12.1

Two typical internal structures of a NOT (TLL inverter) are shown in figure 12.8

Figure 12.8

50 A compact but complete collection of rules for Boolean algebra may be found in http:/www.asic-
world.com/digital/boolean].html#Symbolic Logic
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In Figurel2.8a is drawn the standard Tofem-pole configuration that switches the output between
V* and ground, and in Figurel2.8b the open collector configuration, that requires a pull-up
resistor. The first configuration does not allow connecting more gate-outputs together, while the
second one allows to use many inverters with common output (which makes a NOR with many
inputs). The drawback is that the pull-up resistor reduces the device speed.

Floating TTL inputs go "high"; the TTL inputs shorted to ground inject a current of about 1.6
mA, and shorted to +V drain a negligible current (=0.04 mA). The power available at one TTL
output can drive up to 10 gates (we say it has a fan-out of 10), with a maximum current to ground
of about 0.4 mA, and a maximum current drained from +5V of about 16 mA (with output "low").
The main families’! of TTL gates are 74xx and 54xx where xx stays for the number that specify
the device. The family 54xx extends the 74xx working temperature range from (0°C + +70°C) to
(=559C + +125°C).

A label (L, H, S, LS, F, AS) between 74 / 54 and the number xx, distinguishes sub-families that
differ for speed and power: Low-power (L), which traded switching speed (33ns) for a reduction
in power consumption (1 mW) . High-speed (H), with faster switching than standard TTL (6ns)
but significantly higher power dissipation (22 mW). Schottky (S), operated more quickly (3ns)
but had higher power dissipation (19 mW) Low-power Schottky (LS) good combination of speed
(9.5ns) and low power consumption (2 mW. Fast (F) and Advanced-Schottky (AS) speed up the
low-to-high transition.

The families CMOS (74HCxx high speed, TAHCTxx high speed TTL compatible) offer a current
output of about 20 mA. CMOS gate inputs do not drain current; input not used should be shorted
to ground or to V' to avoid possible damage due to static electricity charge. CMOS gate inputs do
not drain current; input not used should be shorted to ground or to V' to avoid possible damage

due to static electricity charge.

name type t (ns) Vee (V) power (mW)

74XX TTL-Normal 10 5 10
74HXX TTL-High Speed 6 5 22
74LXX TTL-Low Power 33 5 1
74SXX TTL-Schottky 3 5 19
74L.SXX TTL-Low Power Schottky 10 5 2
74HCTXX CMOS (TTL input) 10 2-6 .001
74HCXX CMOS (TTL pin compatible) 10 2-6 .001
40XX CMOS 100 3-18 <.001

51 An outline of different logic families (RTL, DTL, ECL, TTL, IIL, CMOS, HC, ..) may be found in
http://en.wikipedia.org/wiki/Q factor
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A short list of TTL and CMOS logic gates is given in Appendix D 32.
12.2. Bistable circuits: the flip-flop
A flip-flop or latch is a circuit that has two stable states and can be used to store state

information33. Two inverters in a closed loop as in Figure 12.9 make a bistable multivibrator, also

named RS flip-flop, where the acronym RS stays for SET-RESET.

Q Q

S
I_Ii ET I_li_ RESET

Figure 12.9

The outputs Q and Q are stable states that toggle when the corresponding input is grounded by
the SET switch or the RESET switch. By grounding SET we get Q = “1”, and by grounding
RESET we get Q =“0".

This circuit has memory, i.e. it toggles when R (or S) is shorted, only if previously S (or R) was
shorted. The resistors in Figure 12.9 are needed to protect the inverters in case both switches are
shorted to ground, which gives Q = 6= “1”.

Another RS flip-flop circuit is shown in Figure 12.10, in two different configurations, made with

two NAND or two NOR, respectively.

Figure 12.10
Toggling may be triggered by a pulse (negative in the first case and positive in the second case).
When the pulse is applied through a coupling capacitor (as in figure 12.10) it is named edge
triggering instead of level triggering. With edge triggering the pulse duration has no effect (e.g. a

52 See http://en.wikipedia.org/wiki/List_of 7400 series integrated circuits, and
http://en.wikipedia.org/wiki/4000 series

53 See also http://en.wikipedia.org/wiki/Flip-flop_%?28electronics%29
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RESET pulse may be effective even if the SET pulse is not terminated.

The question mark in the third column in truth table defines disallowed state (or forbidden state:
both outputs in the same state: Q=6). In fact (from Figure 12.2) the NAND output is 1 when any

input is 0, and the NOR output is 0 when any input is 1. The symbol Q in the third column in
truth table defines a stable state (either O or 1).

12.3. Synchronous flip-flop

The basic synchronous flip-flop is drawn in Figure 12.11a. The name synchronous means that the

SET (or RESET) command is executed when the CLOCK goes high.

Figure 12.11
With CLOCK enabled the two NAND gates driven by S and R behave as inverters, with CLOCK
disabled the output of these NAND gates is “1”. The other NAND gates are connected as in

Figure 12.10. The disallowed state is for S=R = “1”, that gives Q= 6=“1”.

A modification of this circuit, shown in Figure 12.11b, where an inverter connects R to S is the
type-D Flip-Flop, where D means "data" or "delay" because, the input D value is transferred to
the outputs Q , with a delay.

The synchronous latch of Figure 12.11a allows multiple toggling during a single CLOCK pulse.
A configuration that avoids multiple toggling is the master-slave flip-flop shown in Figure 12.12.
Here two identical synchronous latches in series are triggered by the CLOCK pulse: an inverter

provides the needed counter phase trigger for the two latches.

Figure 12.12
The first flip-flop (master) acquires the logic values set by R and S during the CLOCK "high"
pulse, and its state is transferred to the second flip-flop (slave) when the CLOCK goes low. If
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more than one SET/RESET signal is fed during the clock "high" pulse, only the last state of the
input logic values controls the outputs when the clock goes down. The disallowed state is again
for R=S=*1", that gives “1” to both outputs of the master latch.

If R and S ports are connected by an inverter, as in Figure 12.13, we obtain again a type D flip-

flop.

Figure 12.13
The truth table of this circuit is easily obtained from that of the master-slave flip-flop with the
condition D= S=R . The type-D flip-flop transfers the logic value of the input D to the output Q
when the clock goes low; it is therefore a negative-edge triggered device. Similar circuit obtained
by replacing the NAND gates with NOR gates is positive-edge triggered.
If the output C_) is shorted to the input D, as in Figure 12.14a, we get a divider by two (also named
Type-T flip-flop): the input is the CLOCK port and the outputs toggle at each input pulse; the

output is always a square wave, for a constant frequency clock. The same device is obtained from

an RS Flip-Flop by feeding back the C_) to S and the Q to R, as in figure 12.14b.

Figure 12.14
Many (n) cascaded dividers by two make a divider by 2". Note that the output is always a square

wave.

Adding two AND gates to a synchronous latch, as in Figure 12.15, we obtain a J-K flip-flop.

I_ S JIK|Q
J o— Q o o) Q}o 0/0]0Q
C _ oC 0[11]0
o Hr T clkaf o

5 1[1]Q

Figure 12.15

If J or K are “1” the AND gates transmit to S and R the logical values of 6 and Q; if they are “0”
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they gates transmit to S and R the logical value “0”. Therefore S and R never take the logical

value “1” at the same time, and the disallowed state is removed.

A J-K flip-flop becomes a divider-by-two when both J and K are “1”, and it becomes a type-D
latch if J and K are connected by an inverter.

If J and K are shorted we get a type-T flip-flop, (T stays for foggle): when the T-port is “1” the
output toggles at the CLOCK rising, when the T-port is “0” the toggling is disabled. In Figure

12.16 an example of the clock, toggle and output Q signals are shown.
T J Qfo ¢ L o
C Z‘E C T B B
Q [ 1 [ LI

Figure 12.16

In the 74xx family, dual J-K flip-flop: 7473 and 7476, 7474 is a dual D-type flip-flop.

In the CMOS family: 4013 is a dual D-type, 4027 a dual J-K and 4043 is a quad RS latch type
NOR, and 4044 is a quad RS latch type NAND (see figure 12.10), 4049 is an hex inverter.

The 7476 and 7474 gates have PRESET and CLEAR inputs that, when are set to low level, force
the Q output to high level and to low level, respectively; these inputs are normally kept at high
level: if both are low the device is in disallowed state The 7473 device has only CLEAR input.
PRESET and CLEAR are implemented also in 4027.

12.4. Monostables

A monostable is a device that gives an output pulse with preset width (one-shot pulse) when a
suitable signal (¢rigger) is fed to the input. An example made of two NOR gates is shown in
Figure 12.17. The trigger is applied to the first gate whose output is fed, through an high-pass
filter, to the second gate input.

The trigger pulse is any signal with a fast rising

edge with amplitude lager that 3V.

The working principle is the following. The

output of gate 2 is "0" because its input B, is

"1" (due to the bias resistor R). The output of

gate 1 is "1" because its input By is "0" (due to

the bias resistor R;). When the trigger pulse Figure 12.17

toggles to "0" the gate 1 output, and to "1" the gate 2 output, the capacitor C starts to be charged

by the resistor R and when the voltage of input B, reaches the threshold V1, the gate 2 output

toggles back to “0”.
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The pulse width is RCIn[V/(V-VT)], where V is the bias voltage and V1 the threshold voltage.

The diodes protect the gates inputs from over voltages due to the high-pass filters.
A similar one-shot circuit, made with NAND
gates, is shown in Figure 12.18, where we added
an enabler switch at the A, input. If A is kept
"high" (one-shot enabled) the output toggles at
the B, spike trigger, if A, is kept "low" (one-shot
Figure 12.18 disabled) no toggling occurs. An equivalent
enabling command may be set, in the previous
circuit with NOR gates, with a switch pulling A, to "high" level.
Using two NAND gates we may build a one-shot as in Figure 12.19. Here the trigger must be a
"high" pulse that lasts longer than the output
"low" pulse. The stable state is "0" at input
and "1" at output.
The rising edge of the trigger pulse toggles the
first NAND (inverter), as well as the second
NAND. The voltage Vg(t), fed to the input B
of the second NAND through the RC low-pass filter, decays exponentially with the law Vg(t) =

Figure 12.19

V e VRC, The toggling occurs again for V(T) = V1, where V. is the "low" threshold voltage.
The output pulse width is therefore T=RCIn(V/ V).

The examples of monostable circuit above described give an idea of the working principle of one-
shot devices; however there are commercially available IC that implement monostable (e.g.
74121, 74122, 74123, 9602, 8853, 4538...) with added useful features, as free choice between
rising or falling edge triggering, Q and 6 output. These devices requires only external RC for

setting the output pulse width.

12.5. Astables

Chapter 9 described several examples of astable

multivibrators made by comparators plus RC negative j’
feedback. Much more compact astable multivibrators can

—_
R

be made using logic ports, as shown in Figure 12.20, c R # C
exploiting the delay provided by an RC low-pass filter =
that feeds the output back into the input. Figure 12.20

The symbol added inside the gates in Figure 12.20 marks
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the gate hysteresis’* due to Schmitt trigger inputs. The Schmitt trigger is simply a comparator

Ri
o— O
Vi Vo Vi Ro Vo

VT | S|
a) b)
Figure 12.21

with hysteresis .

A normal buffer (a non-inverting gate that may be made of two inverters in series), may be
transformed into a Schmitt trigger by using a resistive divider in a feedback loop, as shown in
Figure 12.21b, where Ri<Ry/2. Let us consider a CMOS buffer biased between Vss=0V and
Vpp=5V, with threshold equal to Vpp/2. If the output is "low" (Vo= 0V) the toggling occurs
when the input voltage Vjreaches the "high" threshold voltage V. Because V1=ViRy/(Ri+Ry),
we get Vip=(1+Ri/Ro)Vpp/2. The "low" threshold voltage V. , for Vo=Vpp, is obtained by
calculating Vr from superposition of V; and V sources and letting Vr=Vpp/2 . From the relation
Vr = ViRo/(Ri+Rp) + Vo Ri/(Ri + Ry), we get V1= (1 —Ri/Rg) Vpp /2. The hysteresis width is
therefore AV=V1p—Vr1L.=Vpp Ri/Ry, that may be adjusted changing R; or Ry.

Figure 12.22

An astable multivibrator may be obtained from two inverters and an high-pass filter, as in Figure
12.22. The working principle is the following. The switch is initially closed, so that Vc=Vg=0
and VA=V the capacitor is discharged. When the switch is opened, the capacitor starts charging
through resistor R and the voltage V¢ rises until it reaches the "high" threshold Vyy: at this time
the output 1 toggles to "0" and output 2 toggles to "V" , so that Vc =V +V and VA=0. The
current across R changes sign and the capacitor decays with the time constant RC:
Ve (t)=(Vta+V)exp(-t/RC). After the time T, we the capacitor voltage reaches the "low"
threshold: V¢ (t)=VrL. Solving for T, we get T)=RCIn[(Vta+V)/ VrL]. At this time Vo=V and
Vce=V1—V, the current again changes direction and the capacitor voltage follows the equation

Ve (t)=V+(ViL —2V)exp(-t/RC), reaching the "high" threshold Vry after the time T, : where

>4 For example the hex schmitt trigger inverters (in the TTL family: 7414 and in the CMOS family: 4584) or the
quad schmitt trigger NAND (in the TTL family: 74VH132 and in the CMOS family:4093).
35 See chapt. § 9.2.
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T,=RC In[(2V—-V1)/(V—-V1n)].
This circuit offers two output in phase opposition, but the signals are square wave only when the
threshold voltages are symmetric with respect to the
bias voltages (e.g. VrL = AV, Vg =V-AV), which
holds for CMOS but not for TTL. A trick for

adjusting separately the two time constants we may

use the circuit shown in Figure 12.23, where the time

constant is R;C when Q="1" and R,C when Q ="0".

. .. . Figure 12.23
A simple multivibrator for high frequency square

wave (up to several MHz, because the intrinsic delay t due to the finite speed of signal
transmission through the gates is of the order of some nanoseconds), is shown in Figure 12.24,

for 2n+1 inverters, withn=1.

Figure 12.24
The first 2n inverters behave like the RC-filter delay in circuit of Figure 12.20. The square wave
frequency in this circuit is not exactly predictable: it does depend on temperature and on bias

voltage.

12.6. Monostable with delay

The delay generated by an odd chain of inverters may be used to build a monostable (one-shot)

circuit as in the two examples shown in Figure 12.25.

Figure 12.25
The pulse width is T = (2n+1)t. The stable state of the inputs in both NAND and NOR gates is
complementary, because of the inverters chain; therefore the stable output is "low" in the NAND
circuit and "high" in the NOR circuit. When the input voltage Vi, changes state (either going
"high" or going "low") immediately A=B, so that the output voltage V,, changes state. Only after
the delay T also the input B changes state, thus toggling the output. If Ty is the time interval

between two transitions in the input voltage (the input pulse width) it must be (To>T).
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12.7. Delay generator

A simple delay generator may be obtained with the circuits shown in Figure 12.26.

Vi : Vo Vi E Vo
@ = I% c RFc (b)
Vi I Vi 4'___-!IE_L___I_
Vo] .l‘_l _____ - Vol i1 .
T T
! Tl | 1

Figure 12.26
In the NAND version the output pulse falling edge is delayed with respect to the rising edge of
the input pulse of the time interval T=RC In[V/(V=V1q)] . In the NOR version the output pulse
rising edge is delayed with respect to the falling edge of the input pulse of the time interval
T=RC In(V/V1p). In both cases we must warrant T < Tj, where Tj is the input pulse width. By
connecting these two circuits in series (with identical RC) the input pulse will be reproduced at

the output with the delay T.
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13. Some special IC

In this chapter we describe some popular IC that do not belong to the categories illustrated in the

previous chapters: timers, IC voltage sources, analog switches.

13.1. The timer: a simplified description

The IC timer is made essentially by two comparators, one RS flip-flop, two transistors (one
switch and one inverter). An essential drawing is shown in Figure 13.1, where also an external
RC filter is connected to the threshold and discharge ports. The shown circuit behaves as

monostable pulser

Figure 13.1
In the stable state the trigger port is kept at a voltage higher than 1/3V ., the transistor T1 is ON,

the capacitor C is discharged, and both comparators have "low" output. When the trigger input

falls below 1/3V ., the comparator C2 toggles, and the output pulse has width determined by the

time constant RC. The pulse width is set by the time required to charge the capacitor C up to the

voltage 2/3V,. through the resistor R. at this time the comparator C1 toggles, and the circuit
reverts to the initial state.
The Flip-Flop 6 output, normally "high", is forced "low" by the comparator C2 (signal S = set),

and is forced "high" by the comparator C1 (signal R = resef). The transistor T1 is driven by the
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output 6: it turns OFF when 6 goes "low" (SET), and returns ON when 6 goes "high"

(RESET), thus discharging the capacitor.
The output may be forced "low" anytime by setting "low" the reset port that switches ON the

transistor T2, which in turn switches ON transistor T1.

13.1.1. The timer 555

The most commonly used IC timer is 555 6. Its connection diagram is the one shown in Figure
13.1, where the value of the three resistors in the voltage divider is 5 kQ , and the pin-out is
resumed in Figure 13.2. The bias voltages are normally + V. =(5+15)V and — V=0V, but
different values may be used, with a maximum voltage between pins 8 and1l of 16V. For example
we may use + V=17V and — V=7 V.

The output voltage (pin 3) in the "high" state is +V_..—1.7V and -V, + 0.3 V in the "low" state’”.
The pin 5 (Control Voltage) is connected to the inverting input of comparator C1, and its voltage
Vcv may be forced to a value different from the normal one (Vey =!/3 Vo) When not used, this
pin is frequently connected to —V . through a capacitor to improve the immunity to noise .

The pin 2 (trigger) toggles C2 when its voltage crosses the value 1/3 Vi, or the value 1/ Vey.

The minimum trigger pulse-width is 1 ps.

The pin 6 (threshold) is connected to the non-inverting Vg

input of comparator C1 and it forces toggling of Cl1 Control V | < 8

when its voltage crosses the value 2/5 V., or the value Threshold | ¢ 3 | Output
U\ Vey, rieaer |2 555

The pin 4 (resef) forces the output "low" when its

voltage falls below the value —V..+0.7V . Discharge| 7 | 4 Reset
The pin 7 (discharge) is the open collector of a npn —Vee

transistor (T1 switch). Figure 13.2

13.1.2. A monostable pulser made with 555 timer

We add to the circuit of Figure 13.1 an input capacitor C; and a voltage divider (R;, R;) as in
Figure 13.3, and we calculate the width of the output pulse produced by an input negative pulse

Vr .

36 This device, introduced in 1971 by Signetics as NE555, is now made by many companies in the original bipolar
and also in low-power CMOS types (Exar XR555, Motorola MC1455, National LM555, Raytheon RM555, RCA
CA555, Texas SN7255). The dual-type (two timers inside the same chip) is named 556. See also
http://www.kpsec.freeuk.com/555timer.htm

37 In the CMOS versions the output may reach +V, and -V .




96

Let us assume that input falling edge occurs at

t=0, so that the capacitor voltage V¢(t) starts

from zero. It rises towards V. with Ve ! 4| s
. R H Reset .|.VCC
exponential law: V¢(t) = V(1 —exp[-t/RC]). R1 H 6l ol
esho utput——O0
The comparator C1 toggles at the time t=T Gi 555
V

when V(T)=2;V,., that gives T=RC In(3) o—” ! 2 Mrigger

Control | 5
for the output pulse width. The divider (R,R») 1 1/\/ 1N Voltage

R2 |:| ¢ Discharge C,

biases Vr so that Vr>1;3V.: R, may be C m—— V. —
removed if the amplitude of the falling edge is !
larger than V. Figure 13 ;:

For example with R;=R,=R;=10kQ, we get

Vr1(0)=1,Ve, and a time constant R,C;/2 for the input high-pass filter. With a falling edge
amplitude equal to 1/3V, the time evolution of Vr is Vr(t)= (V/2)(1-2/3exp[-2t/R,C;]).
Therefore the time interval T* in which V1 <1/3V is t* =R;C;In(2)/2, which must be t*> 1 ps:
this set the minimum values of the capacitor C;> 100 pF.

On the other hand V1 must reach the stable value V=1,V before the end of the output pulse in

order to avoid®® retriggering, and therefore must be C; <2(R/R;)C.

13.1.3. An astable pulser made with 555 timer

If we short the trigger pin to the threshold pin and we connect the discharge pin to the voltage

divider (R,R,) that charges the capacitor C, as in Figure 13.4, we obtain an astable pulser >°.

Figure 13.4
Let us start the analysis when the discharge pin is shorted to ground by the transistor T1: the
capacitor C discharges through R, with time constant R,C, until V1 =15V At this time the

38 Alternatively the input pulse must be shorter that the output pulse.
59 For a nice simulation of this circuit see http://www.williamson-labs.com/pu-aa-555-timer_slow.htm
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comparator C2 toggles and the Flip-Flop switches-off T1. Now C is charged through R; in series
with R,, with time constant (R;+R;)C, until Vs =2/3V. At this time the comparator C1 toggles

switching-on T1, and the system reverts to the initial state.

In the first phase the time evolution of the voltage Vr (=Vs) is Vr(t) =23V exp(—t/ R,C), that

gives for the "low" output duration: T; = R,C In2 = 0.693 R,C.

In the second phase ("high" output duration T,) the time evolution of the voltage Vs (=Vr) is
Vs(t) = 13Vee +23Vee {1 —exp [-t/(R; + R,)C]}, that gives T, = (R; +R,)C In2 = 0.693(R; +R,)C.
The output cannot be a square wave; in fact the ratio To/T; = 1+R;/R, >1 because the lower
limit to R; is set by the maximum current tallowed for T1: [,=V./R1=100mA. However
assuming R,/R; =100, the output asymmetry becomes only1%. Another way to obtain a better
Symmetry is by adding a diode in parallel to Ry, as shown in Figure 13.4. In this way we get in
the second phase Vg(t) = 13Vt (23Vee —0.6V) {1 —exp (t/ R; C)}, accounting for the 0.6V bias

voltage of the diode during capacitor charging. For example with V=15V we get T, =
0.76 R,C.

13.1.4. A square wave generator

A pure square wave generator may be obtained from a 555 timer as shown in Figure 13.5, where
the capacitor is charged and discharged through the output port.

The resistor R; (non necessary in CMOS timers) is required in TTL timers to allow the output
voltage reaching the value + V., instead of + V..— 1.7 V. The half-period of the square wave is
T/2=RClIn2.

An auxiliary output signal (load Ry) is available at the discharge pin.

Note that the load Ry may be linked to any

voltage: to + V. as in Figure 13.5, or to any

other value in the range (+ V. , — Vi), thus

offering square wave with the desired

amplitude. Moreover the load applied to output

2 does not affect the charge/discharge current

of the capacitor .

Figure 13.5
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13.1.5. A linear voltage-to-frequency converter

In chapter 10 , figure 10.15 shows a simple (quasi-linear) voltage-to-frequency converter made
with two OA. Using one OA and one 555 timer CMOS® we obtain a perfectly linear voltage-to-
frequency converter. In Figure 13.6 the OA is a differential integrator: V(t)=(V,—V;)t/RC, and
the timer produces an output pulse V,

with width T ,=1.1R,C,.

With a positive control voltage V; the

pulse frequency f is proportional to Vi:

f=Vi/V .

Let us assume that at some time t= t*

the integrator output voltage is Figure 13.6

Vi(t*)> V. /3, and the timer output is

V,=0: therefore V1 must decrease linearly with time: V1(t)=V1(t*)—V; (t—t*)/RC, reaching the
threshold voltage V./3 at a time that we assume to be t=0. The output pulse begins (V,=V,.) and
the differential integrator output linearly increases with the law: Vr (t) =V./3 + (V. — Vi)t/RC.
The pulse stops at the time t,, when Vr (T,) = Voo/3 + (Vee— Vi)t o/RC, so that Vr decreases
reaching the threshold V../3, at a time T, and the cycle is closed. During the negative ramp we
have V1(t) = Vr (T,) — Vi (t—T ,)/RC, and setting V1(T) = V../3 we get T=V,T,/Vi, so that the
frequency is f=1/T=V;/1.1R,C, VL.

The time constant RC of the integrator does not affect the frequency, but its value is not arbitrary,
because it does affect the slopes of the Vri(t) ramps: the peak value V, of Vr(t) is
Vp=V/3+(Vee— Vi)t /RC, and it must be V,<2V/3 , so that, in the limit case V; =0 we must

satisfy the condition RC>3t,

13.2. IC voltage reference

Chapter 6 describes some voltage reference sources made with zener and OA with negative
feedback. These circuits, however, are also commercially available as compact IC that may be
classified in 5 classes: two-terminal devices (band gap voltage reference) , programmable zener,
three-terminal fixed-voltage sources, three-terminal adjustable regulators, and four-terminal
adjustable regulators.

The band gap voltage reference are essentially zener with small temperature coefficient, down to

60" Here the output toggles between +V and zero.
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0.1 ppm/°C, with a reference voltage V; weakly dependent on current. The current available to
the load is about I, = 10 mA, while the bias current is I~ ImA. Many values are available for Vz,
e.g.:1.8,2.0,22,24,2.7,3.0,3.3,3.6,3.9,4.3,4.7,5.1, and 5.6 V for LM103xx (where xx stays
for the value V,), 1.22'V for LM113, 1.2V for AD589, 6.95V for LM199/299/399, and 6.9 V for

LM129/329.

Figure 13.7

The programmable zener are three-ports devices that must be used as shown in the diagrams of
Figure 13.7a, or Figure 13.7b, depending on the device type. Without voltage divider (R; , R,) the
devices behaves as a normal zener.

The three-terminal fixed-voltage sources (Figure

13.8) generate a stable output voltage V, (either

positive or negative) in a wide range of input

voltage Vi: from V; =V, to V; =10V,. With a

minimum bias voltage of a few mA they may Figure 13.8

supply to the load currents up to 3 A, with a small

temperature coefficient (10+30 ppm /°C) for the

output voltage V,. Typical values of output voltage are: +2.5V (AD580, AD1403), +5V
(LM123/223/323, LM109/209/309, AD581), and —5V (LM145/245/345).

Low power models offer more values: (typically Vo= 5,6,8,10,12,15,18,24V): LM140/240xx,
LM341xx, pA78Mxx, LM78xx (for positive V,) and LM120/220/320xx, LM79xx, pA79Mxx
(for negative V,), where xx stays for the V, value. E.g.: pA79MO5 for -5V, LM22018 for +18 V.

The 3-terminal adjustable regulator typical wiring Vi . " Vo=V (1+R2/R1)
is shown in Figure 13.9. The output voltage V, o— LMBIY
R2
ranges from 1.25VtoVi-2V, where the input
voltage V; is normally limited to 35V (40V in V=125V R
1

some models) . The value of resistor R, may go

down to zero (for minimum |V ). '
Figure 13.9
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There are model for positive output (LM150/250/350, LM117/317,TL317) and for negative
output (LM137/237/337).

The wiring in the 4-terminal adjustable regulator is similar,

but here the role of the two resistors in the voltage divider is

exchanged (see Figure 13.10): here the minimum output is

for R;=0.

For example in the positive output pnA78G we get V,=+5V,

and in the negative output pA79G we get V,=-2.2V.
Figure 13.10

13.3. Analog switches

The ideal switch may be defined as a bi-stable two-terminal device that an external action may
toggle between zero resistance Ry, and infinite resistance Rogr .

The external command may be mechanic (e.g. manually operated switch) or electro-mechanic
(relays) or simply a voltage signal (analog-switch).

The real switch differs from the ideal one because the resistance R,y in the "closed" state is not
zero and the resistance R in the "open" state is not infinite. In the analog switches may be

Ron>100Q and Rogr <100kQ.
The advantages of analog switches are mainly their speed, and the possibility of use low-power
command signals. Analog switches may be implemented with bipolar transistors or with FET
(typically CMOS). In the first case the current must flow through the two terminals of the switch
in a given direction (unipolar switch), in the second case in both directions (bipolar switch, i.e.
the two terminals may be interchanged) .
There are many commercially available IC analog switches, with various configurations: double,
quad or even more switches integrated inside a single chip.
One of the most popular model is
4016 ¢ (CMOS-Quad-Bilateral-
Switch) whose block diagram is
shown in Figure 13.11.
It must be biased by a maximum
Fioura 13.11 voltage (AV=Vpp—Vss) in the
range from +3V up to +20V but
all terminals (included command pins), cannot go lower thanVss—0.5V or higher

than Vpp +0.5V. The maximum current is 10 mA. Typical value of Ry, is 300 Q, and the

61 CD4016 produced by RCA , or 74MM4016 from National, or 4066 with R, ~90 Q.
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leakage current in the "open" state is of the order of fractions of nA.

More sophisticated CMOS quad bilateral
switches are the models 201 and 20262 .
The block diagram is shown in figures
13.12a and 13.12b, respectively. The first
type has the 4 switches normally closed
(with command voltage is "low"), while
the second type has the 4 switches
normally open..

These IC have dual power supply,
symmetric and referred to ground, with
values in the range from £5V and +18 V.
The command threshold voltage ranges
from+0.8V and +2V : e.g. Vpp = +15V
the threshold is +1.4 V. The threshold voltage may be adjusted through the Vy pin.

Figure 13.12

The maximum current may be higher that 20mA, with R,,=60Q, and leakage currents of
fractions of nA.

The different chips are frequently identified by acronyms that define the functions: SPST means
Single Pole Single Throw, QPDT means Quad poles Double Throw, and so on... (see Figure
13.13

Figure 13.13

62 DG201 from Siliconix, or Maxim, or equivalent SW201 from Precision Monolitics and LF11201 from National,
(and DG202, or equivalent SW202 and LF11202).
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14. Transducers, sensors and interfacing techniques

The name transducer defines a device that transforms a signal expressed in a physical quantity
(temperature, velocity, magnetic field...) into a signal expressed in a different physical quantity.

Transducers are usually divided into two classes: sensors and actuators: The name sensor defines
a device that converts the value of a physical quantity, or its changes into an electrical signal. The
name actuator defines a device that converts electrical signals into changes of some physical

quantity. Some transducers are reversible: they may be used either as sensors or as actuators.

Table 14.1

The term interfacing is used for the techniques used to transform the signal generated by a sensor
into an electrical signal, or to adapt the amplitude and shape of the signal to required features, or
to generate a suitable signal to drive a given actuator.

In this chapter we will analyze only some of the many existing actuator/sensors, to give a general
idea of the simplest interfacing techniques. We well consider, as examples, transducers for four
physical quantities: temperature, force , light, and position.

The temperature transducers may be used as thermometers, but also as level sensors, flux
sensors, thermal conductivity sensors, ... The force transducers may also be used as pressure
sensors, as sound generators/sensors as, ... The optical transducers, depending on the wavelength
may detect/generate visible light, measure the flux/energy of light beams, or X-rays , or may be

used as thermometers (bolometers) ...

General features of a sensor

» sensitivity (ratio between the output signal and the change of the measured physical quantity)
* resolution (minimum change of the input quantity that can be detected)
* accuracy or precision (maximum error affecting the measurement)
range (range where the measurement may be performed with the given accuracy )
* non-linearity (departure of the transfer function from linear behavior)
*  hysteresis (non-reproducibility of the transfer function after large changes)
* dynamic characteristics (response time, rise-time, settling-time, damping, band-pass width)
» signal/noise ratio (due to internal noise or pick-up noise)
* output impedance (in series for voltage source, in parallel for current source)
* drift (thermal, aging)
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14.1. Temperature sensors

Temperature sensors may be divided in three broad classes: resistive sensors, diodes, and

thermocouples.

14.1.1. Resistance thermometers

The resistive temperature detectors (RTD may be metals, semiconductors or carbon-resistors. The
metallic RTD are usually made of copper, nickel or platinum. The platinum RDT are the most
reliable because a Pt wire may be produced with very small impurity content, which makes the
temperature coefficient of the sample highly reproducible (but they are very expensive).

The resistivity of a pure metal follows approximately (at temperatures not too low) the linear law
p(T)=p, (1+aT), where p,is the residual resistivity at T ~0K, proportional to the impurity and
lattice imperfections density, and a=(0R/OT)/R is the temperature coefficient: for platinum

o ~3.85-103 K-!, for copper a =3.9-10-3 K-!, for nickel o =5-7-10-3 K-1.

Figure 14.1

Metallic RDT have small mass (and therefore fast response) and good linearity over a large
temperature range. They must be biased by a constant d.c. or a.c. current. Sensors with small
dimensions have low electric resistance (typically 100Q at room temperature) and this impose
some care in the interfacing technique in order to make negligible the error due to the cables
resistance. Their sensitivity is limited by the Joule self-heating, which requires reducing the bias
current and therefore the signal amplitude. Typical useful ranges: platinum from 10K to 800K,
nickel from -60°C to +300 °C and copper from -70°C to +150°C.

The simplest method to measure a resistance Ry is the voltamperometric method: we measure the
voltage drop Vi across Ry due to the known current I, flowing through it. By keeping constant I,
the Ry measurement reduces to Vi measurement. This technique may be accurate in the 4-

terminals configuration where the bias cables are different from the voltage-detection cables
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Figure 14.2

A simple interfacing circuit that uses the 4-terminals configuration is shown in Figure 14.2,
where OAL1 supplies a stable voltage reference®® V, = V,(1+Ry/R3), OA2 provides the constant
current®* I,=V,/R4. The signal V,=Rl, across the thermometer is measured by the
instrumentation amplifier made of OA3,% with adjustable gain G(x)= (1 +2/x)R7/R¢. The scale
factor dV,/dT is set by the potentiometer P; that controls G(x), while the scale origin is set
(through the differential amplifier OA4) by the potentiometer P, that controls the fraction y of the
reference signal from the output signals: V(T)=G(x)I,R«(T) —yV,. This circuit allows reading the
temperature of the body thermally anchored to Ry in kelvin, Celsius, Fahrenheit, or its
temperature changes with respect to a reference temperature. The resistances r; and r, of the
bias/detection cables are explicit in Figure 14.2: the voltage drop across the resistances r, is made
negligible by the very small input current of the high impedance instrumentation amplifier.

The circuit of Figure 14.2 with d.c. bias cannot distinguish real temperature signal, due to
R«(T) changes from offset voltages of the amplifier chain. This problem may be avoided

replacing the d.c. reference V, with an a.c. stable signal.
An alternative method, that does not require a stabilized a.c. source, compares R, with calibrated

resistors in a Wheatstone bridge-configuration as in the circuit of Figure 14.3 where the bridge is

biased by the sinusoidal voltage V6.

63 See chapter 6.
64 See chapter 7.
65 See chapter 4, §4.
66 See chapter 10.
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Figure 14.3

Here the bridge is balanced for Ry/ R; =R,/ R3. For example, assuming R, =R3;=R and using for
R, a set of calibrated resistors (decade resistor box), the measurement is performed by adjusting

the value of Ry until the output error signal AV=GoOV, is minimized. This gives Ry =R;. The

value of the current I, does not enter the balance equation, therefore we do not need a stable a.c.

bias voltage. : If R =R, (1+¢), with e=(R;—Ry)/Ry the error signal 6V=V,-V| may be written
OV =RI,(e/2)/(2+¢). This equation shows that the error signal is linear only for very small values

of the unbalance parameter «.

This interfacing technique is frequently used with non-linear RTD and with high resistance RTD
(that make negligible the cable resistances), such as semiconductor RDT. Semiconductor RTD
(normally named thermistors) may have negative (NTC) or positive (PTC) temperature

coefficient, depending on the dopant level and on the temperature range (Figure 14.4).
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Figure 14.4

NTC thermistors have normally an exponential temperature dependence R(T)=R_exp(-B/T),

which implies high sensitivity and non-linearity (oo = OR/ROT = —B/T2). The advantage of these

sensors is the small size and the wide range of resistance value.
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The thermistor characteristic equation is frequently written:

R(T)=R(To) eP(1/T-1/To) ,
where R(To) is the reference temperature and the constant {3 (typically from 2000 to 5000 K) is
named characteristic temperature, which measures the sensitivity. Another equation, commonly
used, is the Steinhart-Hart equationt”: T=1/{A,+ A[In(R7)]+ As[In(R1)]’} where Aj, A,, As, are
parameters provided by the thermistor manufacturer, and Rr is the thermistor resistance at
temperature T.

A technique to improve the linearity of the

V A \V/
response in a bridge®® (within a limited v 2
T2 |=———— ,
temperature range: T;<T<T;) is shown in RT !
Figure 14.5. Note that this technique gives an v, Vimf-—---—3 . i
| |
output voltage increasing with temperature. R Vi, b5 ! i T
1 ! f 5
.. . . . - Tl Tm T2 -
The divider shown in Figure 14.5 gives:
V,=V-RAR+R;), where R; is the NTC Figure 14.5

thermistor resistance at the temperature T; forT -0, Ry — o and V, =0, while for T 5o ,
Rr—0and V, - V.

Therefore we may choose for R a value such that V,(T2)—V,(Tm)=V,(Tm)—V,(T1). Solving
this equation we find the best value: R = (Ry| Ry, + RoRypp —2R 1 Rps) / (R + Ry —2Rq). As a

first approximation a good choice is R= Ry;,.

14.1.2. Diode thermometer

The diode thermometer exploits the quasi-linear temperature dependence of the forward voltage
V of a p-n junction, for T>30K when the flowing current I4 is kept constant.

In fact the diode characteristic curve is Iy =I,edV/KsT, where I,~ Ae E&KsT, Ky is the Boltzmann
constant, q is the electron charge, E, is the semiconductor energy gap and A is a constant that
depends on the junction area®.

We get Inly =Inl, +qV/KgT =In A—E,/KgT+qV/KgT, or V-E,/q = —(KgT/q) In(A/ly), which is
the linear dependence mentioned above: V = V,—y{I4}T.

The voltage V, = Ey/q is the diode forward voltage extrapolated to 0 kelvin and vy is the slope

which depends logarithmically on Iy, and decreases with increasing I4. The advantages offered by

67 See http://en.wikipedia.org/wiki/Steinhart—Hart_equation
68 See http://mathscinotes.wordpress.com/2011/07/22/thermistor-mathematics/
69 See also Appendix A.1 and § 8.4.1
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this sensor is the linearity and the constant high sensitivity (about 2 mV/K).
The diode thermometer requires a constant current
bias (I =1+ 100 pA): a.c. current cannot be used.
A circuit suitable for diode thermometry is that
shown in Figure 14.2 (obviously providing
forward bias to the diode). A simpler circuit is
shown in Figure 14.7, where the potentiometer P;
adjusts the bias current Iy and the output voltage is
Vour=G[Vo—Eg+v(1g)T] , where V,=VR/(R+P,)
and G=R/R; is the differential amplifier gain.
The potentiometer P, provides the zero-scale
Figure 14.6 adjustment.
There are commercially available sensors (as
National LM335 or Texas STP35) that give an
output voltage of 2.73V at 0°C, with
temperature coefficient of +10mV/K. These are
IC that include with the sensing diode also the
interfacing circuitry. Other models as Analog

Devices AD590, and AD592 , when biased by a

voltage in the range from 4V to 30V, give an

Figure 14.7

output current proportional to  absolute

temperature with temperature coefficient 1pA/K.

The working range is —55°C +155°C for AD590 and LM335, —25°C +105 °C for STP35, and —
25°C +105°C for AD592.

14.1.3. The thermocouple

The thermocouple is a temperature sensor that exploits the temperature dependence of the
electromotive force (emf) in a junction of two different metals (Seebeck effect) 7°. This emf V¢
is an increasing function of T, almost linear near room temperature with a temperature coefficient
OV1c/0T of the order of a few pV/K.

The main advantages of these sensors are: 1) speed, due to small mass; 2) easy thermal coupling;

3) extended working range, from 10K to 1000K; 4) low cost; 5) no bias needed 7!. Drawbacks:

70 For the Seebeck effect see http://en.wikipedia.org/wiki/Thermoelectric_effect

71 For accurate measurements, non only the sensor but also the wires connecting the sensor to the interfacing circuit
must be thermally coupled to the sample, in order to avoid temperature gradients between the sample and the
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non-linearity and low sensitivity. The sensitivity depends on the junction materials: the mostly
used types are J: (Iron+, Constantan—) and K: (Cromel+, Alumel-), where Constantan is an alloy
60%Cu-40%Ni (also 55%Cu-45%Ni), Cromel is 90%Ni-10%Cr, and Alumel is 95% Ni-2%Mn-
2%Al-1%Co.

Figure 14.8
Note that when two wires of a thermocouple are connected to the interface terminals (usually
made of copper), two more junctions (usually at room temperature T,) are made (see Figure
14.8a): therefore any measurement of V¢ is the sum of three V¢

Let us name 1, 2 the materials of the two thermocouple wires and 3 the material of the voltmeter

terminals and the measured Vi (Tx) the emf of the junction between a and b, at temperature T, ;

we get © VIL(T,) =V2U(T,) +Vj,

TC

(T,)+Viu(T,).

Because VTzé(Ta)-i-V;é(Ta) =VT2é(Ta) =—V%é(Ta) , we get VIL(T,)=Via(T, )~ Via(T,) . Once known

the function V,.. (T) for each value T, we only need to measure T, and to measure V. (Ty)to

obtain T .
To avoid the measurement of the room
temperature, we may add a reference junction
(kept at a fixed known temperature T, , e.g. 0°C
ice-bath), so that the wires loop is closed at T,
with the same metal (1-2-1, in Figure 14.8b) and
the contributions V;.(T,)=-V,;.(T,) cancel out.
Therefore the value of T, does not affect the
measured V0.(T,) = V;2(T,)—Vie(T)) .

Figure 14.9

sensor. Thermal coupling may be achieved by pressing the sensor against the sample (and using suitable
oil/grease or glue with high thermal conductivity).
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This quantity is published in the thermocouple data tables for a given reference temperature T.
In place of the usual ice-bath for the reference junction, the room temperature changes may be
accounted for by an electronic automatic correction provided by a diode thermometer. An
example of this approach is shown in Figure 14.10. The differential amplifier A1 must have high
input impedance in order to make negligible the thermocouple wires resistance changes, and a
high gain G because the source signal is of the order of few mV: with type J changes of 0.1 mV
correspond to temperature changes of about 2 degrees.

With Ro=R,=100kQ,
x=1/9 and R; =10kQ we get

G=200 , i.e. a sensitivity of
about 10mV/K for this

thermometer. The reference

junction temperature

compensation is achieved by

injecting the signal Vs into

the inverting input of Al:

which is transferred to the
output with unity gain 72. The Figure 14.10
signal Vs is the sum of signal

Vi and signal —IcR,, produced by the calibrated current a I. (T.) generated by the IC thermometer
(e.g. AD590, AD592). The resistor R, must be selected in order to compensate with dVs/dT the
changes dV,/dT, generated by the junction at room temperature. With G=200, an IC
thermometer sensitivity 0l/0T=1pA/K and an output drift due to reference-junction
dVs/0T=10mV/K, we must choose R,=10kQ. The potentiometer P allows adjusting the fraction
Vs of the stabilized voltage V, (e.g. for kelvin scale we set V¢=2.73 V at 0°C)

There are commercially available IC (Analog Devices: AD 594 for J-type, AD595 for K-type)
that include all the circuit of Figure 14.5, plus a TTL-alarm output that toggles when the

thermocouple loop is opened.

14.2. Force and pressure sensors

The force sensors measure the deformation of an elastic object subject to the applied force: the
elastic constant relating force and deformation is determined by calibration with known force

values. The sensing object may be a piezoelectric crystal or a resistive bridge obtained from a

72 See § 4.1, where Vs replaces the 0 voltage at one end of resistor R",.
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semiconducting wafer or the flexible electrode of a capacitor, or any elastic object connected to
any suitable strain-detector (e.g. optical or magnetic). When the measured force is due to the
collisions of a gas molecules against the sensing object we get a pressure sensor.

The force sensors measure the deformation of an elastic object subject to the applied force: the
elastic constant relating force and deformation is determined by calibration with known force
values. The sensing object may be a piezoelectric crystal or a resistive bridge obtained from a
semiconducting wafer or the flexible electrode of a capacitor, or any elastic object connected to
any suitable strain-detector (e.g. optical or magnetic). When the measured force is due to the
collisions of a gas molecules against the sensing object we get a pressure sensor.

Many force sensors (usually named strain gauges) are made of a metallic or semiconductor
resistors (wires or films) whose resistance is strain-dependent: the strain produces changes in the
object geometry (e.g. a metal bar under tension becomes longer and thinner, so that its resistance

increases, under compression its resistance decreases).

14.2.1. Piezoresistive pressure sensor

Most of today's pressure transducers consist of a four-piezoresistor’> Wheatstone bridge
fabricated on a single monolithic die using bulk-etch micromachining technology. The
piezoresistive elements integrated into the sensor die are located along the periphery of the
pressure-sensing diaphragm at the points appropriate for strain measurement: the diaphragm
deformation, due to the applied pressure, changes the values of the 4 resistances and the output of
the unbalanced bridge is a differential signal proportional to the bias voltage and to the applied

pressure’4.

Figure 14.11

73 See also http://en.wikipedia.org/wiki/Piezoresistive effect
74 For an extended description see http://www.mech.northwestern.edu/FOM/LiuCh06v3_072505.pdf
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Figure 14.11 shows some details of a typical piezoresistive pressure sensor. The four resistors
are shaped usually with a serpentine-pattern to increase resistance and sensitivity: resistors AB
and CD work in compressive strain, while resistors BC and DA work in tensile strain, so that the
bridge sensitivity is doubled.

In a sensor obtained from semiconductor wafer the resistors (R = 5k€) must be biased by d.c.
voltage (typically 10V). For absolute pressure sensors the full scale may reach 5 MPa, and for
relative pressure sensors ranges from some Pa to some MPa 73.

In absolute sensors the diaphragm seals a small evacuated volume , while in relative sensors the
reference pressure is the atmospheric pressure, or it may be different when measuring differential
pressures. The sensitivity o depends slightly on temperature: 66/00T=-10-3 K-1, as well as the
offset (OV,s/VOT ~ 10 K ') so that some IC pressure sensors include temperature compensation
circuitry. Sensitivity may be adjusted by trimming the bias voltage.

In Figure 14.12, the (Siemens KPY32) pressure sensor is biased by a voltage divider made by two
resistors R; and a (Siemens KTY 10) PTC thermistor thus increasing the bias voltage with

temperature.

Figure 14.12
The gain of the instrumentation amplifier 1 is adjusted by potentiometer P,, and the offset is
zeroed by Pj, and temperature-compensated by the PTC in series to the resistor R7 which scales

the—V , signal at the inverting input of the summer amplifier 2 .

14.2.2 The capacitive transducer

An elastic diaphragm made of conducting material, placed at small distance d from a flat rigid
conducting electrode, is a capacitor whose value C depends on d. If we charge this capacitor

with a voltage source E, through a resistor R, as in Figure 14.13a, every displacement of the

75 The SI unit (see http://en.wikipedia.org/wiki/International System of Units) for pressure are pascal (Pa) and

newton/square meter (N/mz). However other units as Torr (Imm Hg), atmosphere or bar (1 atm = 760 Torr =
101.32 kPa; 1 bar = 750 Torr), are still frequently used.
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diaphragm induces an electric signal V(t) across the capacitor. This proves that this circuit may

be used as capacitive microphone.

Figure 14.13
The RC low-pass filter in Figure 14.13a has output impedance Zc||R, where R includes the
internal resistance of the voltage source E,. The pressure changes associated to an acoustical
wave will be faithfully transformed into a voltage signal for frequencies w>1/RC.
The capacitive microphone is a reversible transducer; in Figure 14.13b the voltage source drives

the capacitor with a sinusoidal signal V(t)=Vcos wt produces an attractive force acting onto the
diaphragm that is proportional to (V cos wt)2, so that the pressure is modulated at the frequency

2wt. In order to generate an acoustical wave proportional to V(t), instead of [V(t)]2, we must bias

the capacitor with a d.c. voltage E,>V(t), and add the modulating voltage V(t) through a
coupling capacitor C;>>C, as in Figure 14.13c: the transfer function in this case is7°

JoRC, /[1+jwR(C+C,)] ; the capacitive loudspeaker band pass is therefore I/RC<w<1/RC;.

14.3. Light sensors
The light flux may be defined as "energy carried by

electromagnetic waves with wavelength between 100 nm
(near ultraviolet) and 10 um (near infrared)"
(alternatively photons with energy between 12 eV and
0.12 eV). Human eye, however, is blind over a large
portion of this spectral range, so that we normally consider
the visible light that has wavelength in the range from
A=0.38 um to A=0.78 um (figure 14.14).

The scotopic vision curve (eye sensitivity in darkness) is
mainly due to the rod cells receptors, in the retina, and the

photopic curve (eye sensitivity in well lit conditions)

Fig. 14.14

76 See chapter 5 and Appendix B.
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includes the cone cell receptors.’”

When the wavelength is A > 0.8 pm radiation is named infrared (IR), or thermal radiation, when
A<0.4 um, is named ultraviolet (UV). For A much smaller we have X-rays then gamma-rays, and

for A much longer we have radio waves.

There are three mechanisms of light conversion into electrical signal: thermal (absorbed energy
converted into phonons, i.e. lattice excitations, i.e. heat), internal photoelectric effect (electron-
hole pair generation in semiconductors), and external photoelectric effect (electron emission by
metals). We therefore distinguish among: thermal sensors (thermopile, pyroelectric crystals,
resistive bolometers), semiconductor sensors (photoresistance, photovoltaic cell, photodiode,
phototransistor) and i photomultipliers.

There are also transducers that convert electrical signal into light: thermal transducers (as light
bulbs), gas discharge transducers (as arc lamps, fluorescent tubes, gas lasers), and semiconductor

transducers (as LED and laser diodes).

14.3. Thermal light sensors

Thermal light sensor ha generally a very flat spectral response: constant sensitivity from IR to
UV. The thermopile sensor is a miniaturized thermocouple made of many (up to 200) junction
pairs assembled into a small device, with reference junction shaded and active junction exposed
to the radiation (Figure 14.15). Commercially available thermopiles have dimensions comparable
to those of a transistor in metal case, and a sensible area of the order of 1 mm2. They must work
with chopped light, and at low frequency (from 5 Hz to 100 Hz).

window

illuminated junctions shaded junctions
Figure 14.15
The high sensitivity types (10 V/W), have an output impedance of the order of 1 kQ, and saturate
with an input power of about 0.1 W/cm?2.

Pyroelectric sensors’® exploit the property of some polar crystals to develop an electric field as

response to a thermal gradient induced by heat absorption (e.g. due to electromagnetic radiation).

77 The rod cells are very sensitive, but do not detect colors, while the cone cells are less sensitive but distinguish
different colors.
78 See also http://en.wikipedia.org/wiki/Pyroelectricity and http://en.wikipedia.org/wiki/Pyroelectric_crystal




114

Examples of pyroelectric crystals are: PbTiO3, ZrTiO5, LiTaO5 .By plating onto the faces of a
pyroelectric crystal two metal electrodes we obtain a capacitor which becomes charged by the
spontaneous polarization. Temperature changes produce polarization changes and therefore a
weak a.c. current (10-12+ 10-10 A) across the capacitor. This current may be converted into a
voltage signal by an OA with high input impedance with a high feedback resistance (Ro = 2 109
Q2). Therefore a pyroelectric sensor may be seen as a current source, in parallel to a capacitor C,
(some pF) and to a resistor R, (some 10!2Q)). The working frequency is in the range

10 Hz + 10kHz, with a sensitivity o, = 0l/OW =1 nA/W.

Figure 14.16
Figure 14.16 shows a possible interfacing circuit. The output signal V=R, 60]=R, o ,0W. Due to

the small sensitivity the value of R, must be high, and therefore also the value of resistor R must

be high to limit the offset Vos (R=R [|R,).

14.3.2 Semiconductor light sensors

Photoresistances are made of semiconductor and exploit the internal photoelectric effect to
convert absorbed light into electron-hole pair generation. Only photons with energy higher than a
threshold energy E, (Energy Gap) typical of the used semiconductor are effective, therefore the
resistance decreases only for light with wavelength below the threshold wavelength A7,
(generally within the IR region). The number of generated electron-hole pairs is proportional to
the absorbed light flux, and the spectral response of the photoresistance is normally peaked at a
value slightly lower than A .

The photoresistance sensitivity is proportional to the lifetime t of the charge carriers®?, and the
useful frequency range is from 0 Hz to some kHz. The higher is the sensitivity the smaller is the
band-pass because large values for requires longer times for the photoresistance to recovery the

original value after the light pulse is finished. Photoresitors must be biased (either with d.c or a.c

79 The threshold wavelength A is determined by the equation hc/A=hv=E,, where h is the Plank constant, v the
light frequency, c the light speed and the energy gap E, is the energy required to promote an electron from the
valence band into the conduction band,

80 The lifetime is inversely proportional to the crystal lattice defects and to the dopant concentration of the
semiconductor.
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currents). Interfacing circuits are similar to those shown in Figure 14.1 and 14.2.
The photovoltaic cell (also named PhotoDiode) is a PN junction 3!, basically a diode, where the
P-doped semiconductor is very thin, in order to allow incoming photons to penetrate the depletion
layer where the generated electro-hole pairs may drift in the internal electric field and reach the
external electrodes. This sensor does not need bias. The sensitivity has a peak close to As .
Response is proportional to the light intensity only for the output short-circuit current.
Figure 14.17 shows the characteristic I-V
curves of a photovoltaic cell (where we
assumed the current positive when flowing
from anode to cathode): for dark condition
(curve 1) and with light input (curve 2).
Curve 1 is the usual diode characteristic
curve, curve 2 is the same shifted
Figure 14.17 downward by a quantity determined by the
illumination.
In quadrant A the junction in reverse-biased and in this configuration it is normally named
photodiode (current flowing from cathode to anode). In quadrant B the junction in forward-biased
and this configuration is normally named solar cell: values V, and I, give maximum output
power W=V-L. (Solar cell I-V curves are normally traced with current positive when flowing
from cathode to anode, so that the cell produces energy W>0 in quadrant B, and in quadrant C it

dissipates energy : W <0)

Figure 14.18

Photocells have the best linearity when short-circuited: we may get zero bias with the circuit of

81 See Appendix Al.
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Figure 14.18a where the current-to-voltage converter keeps the cathode at virtual ground through
the feedback resistor R,. In this circuit the output V, is affected by the OA input bias current I,
that becomes important for small values of photocurrent I: V,=Ro(I1+I).
We may add a balancing resistor R, as in Figure 14.18b, so that Vy,=R,(I+1,) , reducing the
error of a factor 10, but introducing a small bias to the photocell : V;=V,;=R,l.
The problem is completely solved by circuit of Figure 14.18c, that requires an OA with high
CMRR: we get Vi=V;,=R,l and V. =R, I +V,=2 R,L.
An alternative circuit is shown in Figure 14.18d, where the photocurrent signal I across R,
(affected by the OA input bias current I), gives the output V4 =R, (I+1Ip)(1+R,/R;), but the
diode is here slightly forward biased. A zero-bias is achieved in the circuit of Figure 14.18e, that
gives the output V. =R, (I-Iy)(1 +Ro/Ry).
The circuit of Figure 14.18f, provide a reverse bias to the photodiode. In this case an extremely
small dark current flows across the PN junction, due the thermally-generated electron-hole pairs
(10 pA /mm?), decreasing at low temperature. This configuration, suitable for weak light fluxes,
has slow response because most photons generate charge carriers out of the depletion layer that
must reach the electrons by the slow diffusion process.
In the PIN photodiode??, shown in Figure
14.19, the thickness of the depletion layer is
increased by the reverse bias: this makes
faster the response by increasing the drift
velocity of the photo carriers (and by
decreasing the effective capacitance).
In the phototransistor (NPN) the most-
common variant is an NPN bipolar transistor
Figure 14.19 ) .
with an exposed base region; the
illuminated junction is the base-collector, which behaves as a photodiode. The inverse current is
injected into the N-doped emitter region with an amplification of two order of magnitude #. The

equivalent circuit is shown in Figure 14.20. The response is linear only for low illumination.

Figure 14.20

82 The acronym PIN stays for P-layer/Intrinsic-layer/N-layer, because they are obtained from pure silicon wafer and
pure semiconductor is named intrinsic.
83 See Appendix A.
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14.4. Position sensors

Position sensors may be relative to some reference value or absolute.

Absolute position sensors are, for example, those based on the time-of-flight of a traveling
electromagnetic or acoustical pulse that is reflected by the target object (radar and sonar).
Relative position sensors (that measure distance changes), as the inductive sensors, need some

calibration.

14.4.1. The sonar

The name SONAR is an acronym for SOund Navigation And Ranging. This devices emits a
pulse of sound and measures the time elapsed before detection of the echo produced by the pulse
reflection on the target. It has many application in marine technology but also in other fields?4.

The basic structure of a sonar includes a capacitive transducer (beeper/microphone) that emits a

short burst of ultrasonic pulses and detects the echo, plus a clock that measures the time elapsed .

Figure 14.21
The sound velocity in air ¢ is known: ¢=(331+0.6t)m/s, where t is the temperature in Celsius; if T
is the time elapsed, then the distance X (covered in the to/from travel) is calculated as X=cT/2.
The frequency of the ultrasound wave is normally some kHz, and the sensor range is typically

from 0.2m to 20 m.

14.4.2. The inductive position sensors

The inductive position sensors may be LVDT
(Linear Variable Differential Transformer): this
device is a transformer the coupling between
primary and secondary windings depends on the
position of the mobile ferrite core. The primary Figure 14.22
coil is driven by the excitation signal and the

output may be the sum or the difference of two symmetric secondary coils (Figure 14.22).

84 For details on interfacing a sonar see http://www.acroname.com/robotics/info/articles/sonar/sonar.html; see also
http://www.vernier.com/products/sensors/motion-detectors/. This sensor is also used in Polaroid cameras for
autofocussing.
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The two secondary coils may be connected in series with opposite windings: therefore the output
amplitude is minimum when the core is centered and increases when it moves in both directions.
Using a phase-sensitive detector (lock-in, Figure 14.23a) we may get a linear output proportional
to the displacement (positive in one direction and negative in the opposite direction).

A simpler circuit is shown in figure 14.23b, where the output is provided by a pair of diodes and

a low-pass filter.
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Figure 14.23

Another type of inductive position sensor is the LVRT (Linear Variable Reluctance Transducer)
where two coils are wired as inductive half-bridge (Figure 14.24a), and the the unbalance bridge-
output measures the core displacement.

Another configuration is a fixed core with a

ferromagnetic  object that changes the

reluctance of one arm of the bridge as shown

Fioure 14.24
in14.24 b.. leure

14.4.3. The resistive position sensors

The potentiometer, a three-terminal resistor with a

sliding contact that forms an adjustable voltage

divider, may be used as angular position sensor

(rotation sensor), if the axis is mechanically linked

to a rotating object, or as linear position sensor,

depending on its geometry (Figure 14.25). .

Figure 14.25
With respect to the inductive sensors, the resistive
sensor have the drawbacks of friction and wearing (due to the sliding contact), but may be biased

either by d.c. or a.c. voltages. The linear displacement range may be from 5 cm to 50 cm, and the

angular range from 270° to 3600° (in the ten turns helipots).
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14.4.3. The optical position sensors

The limited range of resistive rotation sensors is absent in the digital optical rotation sensors

(optical encoders)® that use an optical threshold and a slotted disc (Figure 14.26).

Figure 14.26
The angular position of the disc (and of the object attached to the shaft) may be accurately
encoded and the resolution (defined by the angular separation of the slots) is not affected by the
range. Besides the rotary models, there are commercially available also linear models, which may
offer a range up to 30 m. The most popular application of such encoders is the old PC "mouse"
(recently replaced by the "optical mouse" that exploits a different technique, i.e. digital image

correlation).

85 For a list of manufacturers see http://www.sensorsportal.com/HTML/SENSORS/RotationSens Manuf.htm
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15. The OA with double feedback

In the previous chapter we analyzed some circuits where the operational amplifier was working
with double feedback (both positive and negative), and we noted that some care must be taken in
order to avoid canceling the effective feedback, leading to unstable open-loop behavior. The
method adopted to perform the analysis was based on the ideal OA approximation, which may
lead to wrong conclusions if we do not take into account the real frequency dependence of the
open-loop gain of the OA.

Let us consider the circuits shown in Figure 15.1.

o F— F _[:I-—:I—
Vi Ra Rb — Ra Rb
Vo Vo
—O —O
Rd 2 Rd Rec
In H— — ol F— H-
= Vi
Figure 15.1

The two circuits are identical: they only differ for the choice of input, and consequently of the
feedback fractions B (positive feedback) and f~ (negative feedback).

The block diagram for both circuits is drawn in in Figure 15.2.

Figure 15.2
Using superposition principle we get V, = a" AV; +(B™—p~) V., or
Vo/Vi=a* A/[1-BA], [15.1]
where f=(B*—p) is the total feedback, and o is a coefficient different for the two circuits. From
Figure 15.1 we get f~=R./(R,+Ry), p*=Ry/(Rc+Ry), with at =R./( Rc+Ry), for the non-inverting
amplifier, and o~=Ry/(R,+Ry) for the inverting amplifier.
Relation [15.1], for ideal OA (A — o0) yields

Vo/Vi=—0"/p. for A—o0 [15.2]
This is the same result obtained in chapter 3 (both in §3.1 and §3.2), without positive feedback

(B*=0). On the other hand, by letting ™= p~, which yields total feedback =0, the OA works in

effective open-loop, that predicts divergence for V,, when A — oo.
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When >~ (i.e. p>0), relation [15.1] is cannot be always approximated by the simple relation

[15.2] for A — co. We must take into account the frequency dependence of both A(s) and f(s),

where s is the complex frequency A general discussion of this situation is not trivial 86. Here we
will analyze some important specific cases.

If we assume the typical frequency dependence for the open-loop gain A(s)=A,/(1 +s/w,) of the
OA, and a real feedback f3, relation [15.1] becomes:

Vo/Vi=T(s) = o Ao/(1 —BA,+5s/0,), [15.3]
a function with a pole on the real axis s=w, (BA,—1). The Laplace transform analysis (see
Appendix B.6) predicts divergence when the transfer function has a pole on the real axis.
Therefore the approximation [15.2] is limited by the

condition BA,<1, for any value of A,, also for A, — 0.

Let us consider some practical example: in §5.1 we
introduced a positive feedback in the circuit of Figure 5.3,
to improve a zener-stabilized voltage source. In Figure
15.3 is drawn the same circuit, but with exchanged inputs
in the OA (and omitting the voltage divider for simplicity:
we will assume a reverse biases zener). Figure 15.3
The analysis is the same. By using the superposition principle: V,=—AV, + A[R3/(R3+ R)]V,, ,
or Vo[1-(R3+ R2)/AR3]=V,(1+R,/R3), that for A — o0, gives V,=—V, (1+R2/R3).
This conclusion is wrong !! In fact it predicts a forward biased zener (V,<0) contradicting our
initial assumption.
A second example of double feedback was given in
§8.8: here it is easy to show that the two inputs may be
exchanged as in the circuit of Figure 15.4. The
performance is the same as reported by various

authors87.

Figure 15.4

86 A detailed analysis may be found in Feedback and control system analysis and synthesis, J.D'Azzo et al.
87 See The Art of Electronics, P. Horowitz et al., fig. 4.4, page 151.
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16. Guide to experiments

This chapter suggests some practical exercises with the circuits described in previous chapters,
giving in most cases only suitable values for the passive elements and sometimes also hints for

performing elementary measurements.

16.1. Some preliminary suggestion

The simplest method to test a circuit is to mount it onto a solderless breadboard®®, (see Figure
16.1 and Appendix C.6) that allows fast checking without soldering the components. More
complex circuits should be soldered onto a stripboard®®:
soldered contacts are in fact more reliable than pressure
contacts.
For the IC components, however, it is better to use pressure
sockets that allows avoiding overheating the IC pins with the
soldering iron. Pressure sockets
(Figure 16.2) should be soldered to Fioure 16.1
the stripboard before inserting the IC.
Ancillary basic instrumentation is: dual power supply (£15V, possibly
Figure 16.2 with adjustable outputs), digital tester (2 or 4 digits), a signal generator
(1Hz+100kHz) and an oscilloscope (2 channels).
The default OA is a generic one (LA741 or equivalent), the default bias voltage is dual (V. =
+15V), filtered by two capacitors connected to common ground. Generic OA may also be used as
comparators, but a better choice is to use models that avoid latch-up (specified in Appendix D.3).

For the timer 555 the timing RC filter should use values in the ranges 10 kQ+10MQ and 100
pF+10 puF. The minimum pulse width is about 10 ps.

Signal generators: the output impedance of commercial
oscillators is normally 50Q; many models offer also an
adjustable d.c. offset(that might be useful for exercises with 6)
circuits of chapter 8. The suggested amplitude is 1 V peak-
to peak. 1kQ

A fast test of phase relation between two signals is = = =
. . : . . Figure 16.3
achievable using the oscilloscope in X-Y mode: this means

that one signal is fed to vertical deflection amplifier (channel Y) and the other signal to the

88 See http://en.wikipedia.org/wiki/Breadboard
89 See http://en.wikipedia.org/wiki/Stripboard
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horizontal deflection amplifier (channel X).

The Lissajous curve traced onto the oscilloscope screen in X-Y mode (Figure 16.4) by the
synchronous signals V, and Vy, gives the phase ¢ delay. Assuming equal amplitude: V,=V =V,
(eventually by adjusting the channel's gain) we get: V, =V cos(wt) and V=V cos(wt+¢). If ¢
=0 (or ¢ =m), the trace is straight line with slope /4 (or 37/4) with respect to X axis, and if ¢=
n/2 (or ¢ =3m/2), the trace is a circle. For intermediate values of the trace ¢ is an ellipse, whose
major axis is in the first quadrant for 0 <¢ <m/2 and in the third quadrant for nt/2 < ¢ <m. In this
case, after centering the ellipse on the screen, we measure the intercept Y(0) of the trace on the Y
axis and we get ¢ =arc sin [Y(0)/V,], as proven by the relations V,/V,=x=coswt, and V,/V,
=y=cos(wt+¢)=cos mt cos p—sin wt sin .

For x=0, sinwt =1 and therefore y(0)=sin ¢.

A
Y A Y=X VA

sin ¢ =0 0<sinp<1 sing=1
(6 =0) (¢ =m/2)

I VYo
---Y(0) >
> sing =Y(0)/V,

O<sin p<1 (dp=m)

Figure 16.4

16.2 Exercises

In this section each exercise refers to the circuit shown in the corresponding Figure

Figure 3.1, 3.2 and 3.3 Inverting and non-inverting amplifier
Choose R;=1kQ, R,=1+10kQ, R=0 Q, V;=0+£10V. Measure V,, for several V; values and for

different R, values within the suggested ranges. Note how changes the input voltage range for
linear behavior with different gain values. In the circuit of Figure 3.2 set R,=0€, and verify that

you get a follower (Figure 3.3).



124

Figure 3.4 Differential amplifier

E A F Ri1 Rot
(_P R T Vi o—[ 1 —1
* Rd||eo G
I—O B Ri2
Rb Va2 O— Vo
I—O C Ro2
Rc

Figure 16.5

a) Offset zeroing, with G=100. (we neglect Iys). R;; =R;p=1kQ, R,; =R, =100kQ.
Short the inputs V; and V, to ground. Achieve offset-null (V,=0) through a 20 kQ

potentiometer connected to pins 1-5 (see § D.2.1 or § D.2.2).
b) Measurement of differential voltage with G=10. Choose: R;;=R;;=10kQ and

Ry1 =R, =100k€, (carefully select 1% resistors, or use a small resistance trimmer in

series to the smallest resistor to balance the circuit. Using the voltage divider ABCD

shown in Figure 16.1 (R,=R.=10kQ potentiometers, R,=100Q potentiometer,
V,=+15V, Vp=-15V). Connect B to V; and C to V, ; measure with a multimeter
voltages Vi, Vi, Vo—Vg and V, for several values of R,, Ry, R.. Exchange inputs V;

and V,, and repeat the measurements.

c) Measurement of differential gain, with G=100 (R;;=R;;=1kQ and R,=R_.=10kQ). With

reference to Figure 16.5: short D to ground and connect A to the output E of a sinusoidal

oscillator (frequency ~1kHz, V,~1V) and to channel-1 of the oscilloscope; connect B to V
and C to V,, and V, to channel-2 of the oscilloscope. Measure V and Vi and calculate the
differential gain Ay=V /(Vc-Vp), where (Vo—Vp)=-VgRy/(R,+R,+R,), for different
values of Ry,

d) Measurement of common-mode gain. (Ry=10k€). Connect E to F and G to both V| and V,.
Connect V5 to channel-1 and V, to channel-2. Note that Vcn=Vs, Ad=Ro/Ri and
Vo=Ad(VostVd)+AcmVem - Remember that Vg is a d.c. voltage while Vg is a.c. voltage.
Letting Vg =0 (you get Vo=V Ri/Ry) adjust the offset-null. Now you may measure
Aem=(V,/Vg) for several values of Vg. Minimize Acymby adjusting resistances

Ro1:R02.Ri1 Rip
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Figure 3.8 Evaluate Vg, I,, and I

a) Choose R;=R=100Q, R,=10 kQ. By neglecting AV,=-Rlos we get V =V R;/R,. Measure
Vs for different OA (e.g. pA741 and TLO81). Adjust the offset-null with a 20 kQ trimmer
connected to pins 1-5 (§ D.2.1 or § D.2.). Follow the offset drift while heating the OA with an
hot soldering iron (do not exceed in heating).

b) R=1MQ pot. Remove R; (replace R,with a short). You get Vo=V|=V,+Vos=—Rlp
Assuming V=0 (previously adjusted to zero) you get: I, =—V/R. Note that the output offset
depends on R Compare I, values for different OA.

c) Choose R;=R=10kQ, R,=1MQ. Because R=R;||R,, we get Vo=Vos—RI,s=—R,], that

08>

gives an evaluation of I ;. By removing R you get Vo =R}, 1.e. an evaluation of I;; =V, /R,,.

Figure 4.1 Differential amplifier with variable gain
Choose R;=R,=R,=100kQ (both branch' and branch"), R=100kQ pot in series to 1kQ

(0.01 <x<1.01). Measure the differential gain while changing R. Input a.c. signal as in Figure
16.1 (R,=R.=10kQ, R,=100Q).

Figure 4.2 Differential amplifier with linearly variable gain
OA=TL082, R;=10 kQ, R,=100kQ, R= 100 kQ pot, R'=100kQ. Demonstrate that the

differential gain is: G=R/R;[(x+R"/R)/(1+R'/R)], 5<G<10. Note that, with the smallest (R'+xR)

value, the output Vo range is reduced.

Figure 4.3 Differential amplifier with linearly variable gain
OA=TL082, R{=10kQ, R;=R=100kQ, xR=100kQ pot, R'=100kQ. Demonstrate that the

differential gain is: G R /R;(x+R'/R), 10<G<20.

Figure 4.4 Differential amplifier with linearly variable gain
Choose OA =TL082, R, =R', =R; =R'; =10 kQ, xR =100 kQ pot. Note that the gain does not

depend on R, and R';, until R, =R'5.

Figure 4.5
R,=R',=R; =R'; =10 kQ, xR=100 kQ pot in series to 10 kQ. 2 <G< 40.

Figure 4.6 Instrumentation amplifier
OA=TL084. R,=R;=R,=R3=100k€, xR =100 kQ pot in series to 10 kQ. Note that R, may be

different from Rj3: the gain value is determined by their sum.
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Figure 4.7 Amplifier with positive or negative gain
Values suggested for (-1 <G<+1): R,=R;=10kQ, R=100 kQ pot, R, =00 (removed). Values

suggested for (-10<G<+10): R,=R;=1kQ, R=10 kQ pot, R,=1.11 kQ.

Figure 5.2 Voltage source
Vee= +15V / 0V. Ry= Ry=10 kQ. Ry 10 kQ in series to an amperometer (multimeter). The

voltage V, may be obtained from +V through a voltage divider as Vg in Figure 16.5.

Figure 5.3
Use 6.9V zener (e.g. LM329) with Ry =5kQ, R, =10kQ. For V,=+10V, choose R; =3.3kQ (I,

~1mA), R,=10kQ, R3=22 kQ. For V,=-10V, reverse the zener and the diode.

Figure 54
As the previous circuit, but exchange the values of R, and R;.

Figure 5.5 Twin voltage source
Use 6.9V zener, R;=2kQ, R,=10kQ, R3=50kQ. Using power OA (nA759, pA791, TC365,

L165, 3571), this may give a dual power supply £V, from a single one with V,.>2V,,.

Figure 6.1 ,6.2,6.3 Current sources
R;=1 kQ, R; =10 kQ pot in series to an amperometer. Measure I}, for various R; values, as a

function of V;, between 0 and V_./2 for circuit 6.1a, and from 0 and -V /2 for circuit 6.1b.
Check the ranges of I; and of R; within which the circuit does work properly. In the circuits of
Figures 6.2 , 6.3 use a battery for V;, or another voltage source referred to a ground insulated

from the ground of the power supply used to bias the OA.

Figure 6.4 Voltage controlled current source
R{=R,=10 kQ, R,=R3=1kQ, R; =5k pot in series to an amperometer. The capacitor (some

pF) may be be placed in parallel to R,. Verify that I; does not depend on Ry, and that is may be
controlled by the input voltage V; (that must be generated by a low output impedance source, to

avoid affecting the R effective value.

Figure 6.5
R;=1kQ, R,=9kQ, R=10kQ, C=10 nF, R; =5k pot in series to an amperometer. Verify that

I; does not depend on Ry, and that is may be controlled by the input voltage.
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Figure 6.6
OA=TL082, R; =R,=10kQ, R;=R4 =1kQ, Rs=1kQ in series to a 100k pot. R; = 5kQ pot

in series to an amperometer. C = some nF. Verify that I; does not depend on R;, and that is may

be controlled by Rs or V;.

Figure 6.7
OA =LF356, 1.2 V zener, R,=5kQ, R=1kQ in series to a 100k pot, R; =10k pot in series

to an amperometer. Measure I; as a function of R and R; ; evaluate I} max and Ryip.

Figure 7.1 Half-wave rectifier
OA=pA741, diodes= IN914, R =R; =1 kQ. Small input signal (|V;,/|<1V). Use the

oscilloscope in X—Y mode. Compare results for circuits of Figures 7.1a and 7.1b, with and

without diode D2. Replace bipolar OA with FET-input OA, choose R, =100 kQ, diodes
IN456+1N459, and note the different behavior.

Figure 7.2 Inverting half-wave rectifier
R=R'=R; =10 kQ, FET input OA, or, using bipolar OA, insert a resistor (R/2) at the non-

inverting input. Use the oscilloscope in X—Y mode.

Figure 7.3 Full-wave rectifier
R,=R;=R'1=R,=R"%»=10kQ, R;= 10 kQ pot in series to 1 k€, for gain trimming. R';= 2 kQ

pot in series to 9 kQ, for output symmetry.

Figure 7.4
R,= 10 k€ pot in series to 10 kQ, R'=R=10 kQ . Load the output with 10 kQ resistor. Use

C=100 pF capacitance to avoid oscillations. Note that the value of R, does not affect the circuit’s

behavior.

Figure 7.5
R{=R'|=R;=2R,=10 kQ (R, may be the parallel of two 10 kQ resistors), R,= 50 kQ pot in

series to 10 kQ for gain trimming.

Figure 7.6
R'=R=10kQ, R;=5kQ. Use C=10 pF in parallel to D2, or in parallel to both diodes to prevent

oscillations.
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Figure 7.7
Must be G=R'/R. Choose G=2, i.e. R,=3R; e.g. R,=3kQ, R'=2kQ., R; =R=1kQ.

Figure 7.8
R;{=Ry,=R3;=10kQ. R4=20kQ (R4 may be the parallel of two 10 kQ resistors). A capacitance

in parallel to D1 helps avoiding oscillations.

Figure 7.9 Peak detector
R~=100kQ. C=10nF (ceramic, must be a small value if you need a fast peak-detector). Choose

diodes with low leakage (e.g. 1N458). OA : FET-input. Use a double-channel digital scope to
compare input and output while manually changing input (starting from Vi=0) with a

potentiometric divider as that shown in Figure 16.5.

Figure 7.10 Improved peak detector
R;=100kQ,R,=20 kQ. C=10nF. OAl=generic (e.g. nA741), OA2 = FET-input OA (e.g.

LF356). Or use dual FET-OA (e.g. LF353, TL082).

For all the exercises of Chapter 8 use a sinusoidal oscillator (e.g. 1V amplitude) and a two-

channel oscilloscope to observe V, and V; while changing the frequency .

Figure 8.1b  Integrator
R=10kQ, R,=1MQ, C=10nF. Use a sinusoidal oscillator without offset (it would be amplified

of a factor 100!) . Start from high frequency (=50 kHz) decreasing until |V | = [V;|. Evaluate the
phase-lag of V with respect to V;. Draw the plot of V;/V,, versus w, and verify that the slope is

RC. To remove possible residual input offset, use an high-pass filter between oscillator and
integrator input. Switch to a square-wave oscillator to drive the input and observe that the output

is a triangle-wave.

Figure 8.2b Differentiator
R; =1kQ, R=100kQ, C=10nF. Start from low frequency (= 100 Hz) increasing until |V |=|Vj].

Evaluate the phase relation between V and V;. Switch to a square-wave oscillator to drive the

input and observe the output signal.

Figure 8.4 Active low-pass filter
Choose R; =R3=R4=10kQ, C,=C5=10nF. You get G=1, f=wp/2n=1.59 kHz and T=1.5. If

you double the values of resistors you see that the values of G and T do not change, and wy is
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reduced of a factor 2. Increase C, of a factor 10 and decrease Cs of a factor 10, you see that G
and o do not change, and C scales of a factor10. Observe that the maximum of the transfer
function amplitude is approx. G/2T (when T << 1). Replace R with a 100 kQ pot and observe the

dependence of G and T on R;.

Figure 8.5 Active high-pass filter
Choose C; =C5=C4=10 nF, R,=R5=10kQ. You get G=1, fj =wo/2n = 1.59 kHz and T=1.5.

If you double the values of capacitances you see that the values of G and T do not change, and wg
is reduced of a factor 2. Increase R4 of a factor 10 and decrease R, of a factor 10, you see that G
and wo do not change, and C scales of a factor10. Observe that the maximum of the transfer

function amplitude is approx. G/2€ (when CT<<1).

Figure 8.6 Band-pass filter
Choose R; =R, =10kQ, R5=20 kQ, C3=C4=10nF. You get G=1, fy = wo/2x = 1.59 kHz and

Q=1. If you double the values of capacitances you see that the values of G and Q do not change,

and wy is reduced of a factor 2. Divide Ry and R, by 2, and double Rs , you'll se that wo does not

change, while Q doubles and G is multiplied by 4.

Figure 8.12 Low-pass VCVS
Choose R; =R, =10kQ, C3=C4=10nF. You get fy =wo/2x = 1.59 kHz and T=1. Increase C5 of

a factor 10 and decrease C,4 of a factor 10, you see that wo does not change, while T scales of a

factor10.
Figure 8.13 High-pass VCVS
Choose R3;=R4=10kQ, C; =C,=10nF. You get fy = wo/2n = 1.59 kHz and T=1. Multiply R4

by 10 and divide R3 by 10, you see that wy does not change, while T scales of a factor10..

Figure 8.15 State-variable filter
With Ry =R, =R =10 kQ, C=10nF, you get fp=wo/2n= 1.59 kHz, T=0.5, Q=G =G = 1.

Compare the three output signals with the input while changing frequency. Letting Ry > 100 kQ
youC=0.1, G =2,Q~=5.

Figure 8.16 Notch filter
Choose R{ =R, =10k, C=10 nF and measure w( and Q.
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Figure 8.18 Band-pass NIC filter
With R, =Ry, =10kQ, C;=Cp=10nF, R, =10kQ, R; =15 kQ in series to a 5kQ pot, you get

fo=wo/2m~=1.59 kHz. By trimming the pot, adjust the value G*= Ry/R, approaching the value 2,

and observe the Q divergence.

Figure 8.19 , 8.20 Gyrator

Choose R; =R, =R3 =R5=10kQ, C=100nF. You get L*=108C
=1 mH. Make an R*L* low-pass filter by driving the effective
inductance L* through a resistance R=10 kQ( Figure 16.6).
Measure the break frequency of the R*L* filter. Note that the
effective R* resistance is R + Ry , where Ry is the output Figure 16.6

impedance of the oscillator (typically 50Q). To avoid oscillations use a small capacitance (=10

pF) in parallel to R3, in circuit of figure 8.19, or Rs, for figure 8.20.

Figure 8.21 Capacitance multiplier
Use R;=10kQ, R;=100kQ or 1 MQ, C=10nF. You get C*=11C or 101 C. Measure the break

frequency of the low-pass R*C* filter, as above. Here the damping capacitor (=47 pF) should be
placed in parallel to R,

Figure 8.22 Capacitance multiplier
R;=1kQ, R, =100kQ, C=1nF. These values give an equivalent capacitance is C* =100 nF in

series to Rp = Ry || Ry = 1 kQ. Measure the break frequency of the low-pass R*C* (with
R*=R+Rg). The transfer function of this filter is [(1+sRpC*)/(1+s{Rp+R*}C*)].

Figures 8.24, 8.25 IC Active filters
Beging with Rg; =10k, Rp,=kQ,R;=10kQ2, Ry=1kQ. (for fig. 8.25 : Rp3= Ry = Rps =10k€2)

Then observe the changes in G, Q and w, by changing the starting values.

Figure 9.1 Comparators
Drive the OA with a sinusoidal oscillator, f~1kHz,

Vpp®5V, as in Figure 16.7. Use the oscilloscope in

p

X Y mode to observe how changes the transfer

O
function while varying the reference voltage V. +15V 10kQ 5kQ 10kQ -15v

Figure 16.7
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Figure 9.2 ¢ 9.3 Non-inverting and inverting comparator
Drive the OA with a sinusoidal oscillator,

f~1kHz, Vpp=5V, as in Figure 16.8. 10kQ 10kQ 10kQ
H

o
(R;=R,=R3=10kQ). observe how changes -15¥

the transfer function while varying the [ ) o e

reference voltage V. Replace Ry with a 5 _

kQ pot and observe how changes the If o

hysteresis with Rjvalues. Connect V; to the
voltage divider (SW;) and measure the Figure 16.8
threshold voltage, for different values of Vi

and R;. Interchange Vy and V; (circuit of Figure 9.3) and repeat the measurements.

Figure 9.4 Bipolar multivibrator
C=10nF, R;=R,=100 kQ, R=100 kQ pot. Connect V, to channel-1 and V; to channel-2.

Measure the square-wave period as a function of R. Swap R with R, and measure the square-

wave period as a function of R, (pot).

Figure 9.5
C=10+100nF, R;=R,=10 kQ, R,=1 kQ. R'=R"=100 kQ pots in series to 100 Q. Generic

diodes and 5.8V zener. Measure the period and pulse width as functions of R' and R". Measure

amplitudes of V’ and V, for various bias voltages (Vcc).

Figure 9.6  Unipolar multivibrator
C=100nF, R;=R,=100kQ. R3=R=100kQ pot in series to 10kQ. +V_,.=+15V, 0V. Connect

V,, to channel-1 and V; to channel-2 and measure the frequency as function of R and Rj. Repeat
with C=10nF. Swap R, and R3 and measure the pulse width as function of R, (pot). Repeat

measurements with R, and —Vcc connected to —15V.

Figure 10.2 and 10.3 Wien-bridge oscillator
Figure 10.3a: R,=R3=15 kQ, C,=C5=10+100 nF, Ry= 200 Q pot in series to 200 Q. The

value of R, must be adjusted in order to stabilize the amplitude and minimize the sine wave
distortion. Use filament lamp 12V-20mA or da 24V-50mA, (with resistance at 10 mA of about
500 and 250 Q, respectively). If Ry is the value at the working current, the R, value should be
adjusted to about 2 Rp. Figure 10.3b: The NTC thermistor may be 4.7 kQ Philips (mod.
232262721472), with Ry = 5 kQ pot.
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Figure 104
R=20 kQ pot, R; =20 kQ, R;=47 kQ, Rr=10 kQ. Adjust R for best stability and minimum

distortion.

Figure 10.5 Phase shifter
R,=10kQ, C=100nF, R=100k€Q pot. Oscillator : 5V, (may be one of the Wien-bridge circuits

previously tested). Use X-Y mode oscilloscope to evaluate the phase shift versus frequency, for
both circuits 10.5a) and 10.5b), and for various R,C values. Note that amplitude does not depend

on m.

Figure 10.7  Double phase shifter oscillator
OA=TL084, R,=R=15kQ, Z,=7"',=C=100nF, Z,=7',=15kQ, R’ ;=10 kQ in series to a 10

kQ pot for amplitude adjustment. Stability is improved by adding two diodes and a small
resistance (200 Q). in parallel to the R'; feedback resistor (as in Figure 10.4). Frequency may be
changed by varying Z, and Z',. High frequency self-oscillations may be damped with a small
capacitor (e.g. 22 pF), in parallel to R’

Figure 10.8  Quadrature shifter
Ry =R,=10 kQ, C;=C,=10 nF. The oscilloscope in X-Y mode will give an ellipse with

orthogonal axes: changing frequency the /2 phase shift will not change.

Figure 10.9 Quadrature oscillator
OA=TL082, R;=R=15kQ, R'=10kQ in series to a 10kQ pot, C=C'=C;=10nF. In parallel to

Cy:200k€ pot , in series to 200 kQ in parallel to two diodes. Begin with R' slightly smaller than

R to trigger oscillation, then adjust it to minimize distortion.

Figure 10.10 Quadrature oscillator
R=R'=10kQ, C=C'=C"=100nF, R,=100 kQ in series to a 20 kQ pot, Rf=10 kQ. Begin with

maximum R, value, then reduce it to minimize distortion.

Figure 10.11 Square/triangular wave generator

OA=TL082, R;=1kQ, R,=3.3kQ, R=10kQ, C=100nF. By replacing R with two different
resistances each in series with a diode, (with different polarities) the integrator current is different
for the rising and falling slopes in the triangular wave, so that the output comparator gives pulses

with different width.
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Figure 10.12 Square/triangular wave generator
OA=TL082, R=10kQ, R;=33 kQ, R,=1kQ, RG=Rp=5kQ pots, C=100nF,

Rr=Ro= symmetric voltage dividers with two 10 kQ) resistors in series to 1kQ pot, 6.9 V zener.
Vee=+15V. Adjust the symmetry of triangular and square waves (Ry and R, values). Adjust the

amplitude of V1 (by trimming Rg), then restore the same frequency value by trimming Rg.

Figure 10.13
OA=TL082, R=R,=10kQ, C=10+100nF, R;=10kQ pot. Change amplitude (and therefore

frequency) of Vr by varying Ry. Insert a resistor (= 1k€) between the OAl output and Vg,

output, and a twin zener between the output V and ground to stabilize the amplitude.

Figure 10.14 Quadrature square/triangular wave generator
OA=TL084, R=10kQ, C=10nF. A four-channel oscilloscope may make easier to compare the

four outputs. Try changing one R (or C), and observe the effect on the signals.

Figure 10.15 Voltage to frequency converter
OA=TL082, R=100kQ, R1=Ry=10kQ, R3=1kQ, C=1nF (0 10nF), D=1N914, V. ==£15V.
Measure the frequency as a function of the (positive) input voltage. Reverse diode and use

negative input voltage and observe the result.

Figure 10.16 Frequency-to-voltage converter
OA=TLO082, R1=1kQ, twin Zener 6.9V, R=1MQ, C=1nF, C;=1 uF, diodes 1N914. Measure

the input voltage as a function of the input frequency. Evaluate the minimum frequency that

warrants linearity.

For lock-in, the input signal Vs may be a 10 fraction taken from a cascaded voltage divider

(Figure 16.3) biased by the reference sinusoidal signal Vg; basic tests are the following:

1) Linearity: proportionality between d.c. output and a.c. input amplitude.

2) Asynchronous signals rejection (by adding to Vs a signal taken from another oscillator or a
d.c. voltage)

3) Phase response (using a phase shifter placed between Vg and the input voltage divider)

4) Evaluation of the useful frequency range, input amplitude range, quality factor.
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To drive two analog switches in phase opposition,

+5V
the circuit of Figure 16.9 may be used, where the . 1kQ
+5V
potentiometer R trims the threshold voltage, in - ¥
}E }‘:Z ¢ -5V
order to obtain symmetric square wave outputs [ S1ERIE
. . LM311
(V*, V1) even if the reference voltage is affected \?_' 1 Rl [*
RLG +5V
by an offset voltage. The pull-up resistor (1kQ) is Hg Hg g -
required only by open-collector comparators (as B _5—\; ; V-
LM311/LF311 /uA710 /uA339). -V

Figure 16.9

Figures 11.8,11.9 and 11.10  Lock-in with multiplier +1
OA= TLO084, Analog switch: CD4016 or equivalent. R;=R,=R=10 kQ, C=1 pF, f~1kHz.
Observe the signal before and after the low-pass filter (try with different time constants, e.g.

change C). Insert a phase shifter (Figure 10.5) into the Vr channel and measure V, as a function

of the phase shift. Test the behaviour with different frequencies

Figure 11.12  Synchronous filter
R=Ry=100kQ, C=C,=100nF. Use a sinusoidal signal (some kHz) fed to Vr and to Vs ; add to

Vs another (higher and lower frequency) noise and verify the rejection of asynchronous signal at

the output. Compare signals before and after the high-pass filter. The output amplifier may have
high gain (G=10+50).

In the following exercises on logic circuits, the default power supply is: +5V /ground, valid for
both TTL and CMOS. You may use four 1.5V batteries in series to a diode (V~=5.4V).

To check the logic value of any point of the circuit, use a LED connected to +5V through a 1 kQ
resistor (or 330 Q for more bright signal): the value is "low" when LED is ON; this reverse logic
is justified by the small output current of TTL in "high" state (about 0.4 mA, versus minimum
LED current of about 2 mA). This inconvenience may be avoided using CMOS type 74HCxx or
74HC40xx.

Figure 122 ,12.3
Verify the De Morgam theorems using the truth tables (equivalence between NAND and OR with

negated inputs, between NOR and AND with negated inputs).

Figure 12.5
Setup EXCLUSIVE OR using the three equivalent circuits and verify the truth table.

Figure 126 ¢ 12.7
Build NOT, AND, OR, NOR, EX-OR first with NAND gates, then with NOR gates.
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Figure 12.8
Build 6-input NOR with 7405 (Hex-inverter, open-collector) and pull-up 2.2 kQ resistor

connected to the 6 outputs.

Figure 12.9 ¢ 12.10 RS Flip-Flop
Use 470 Q resistors, (and 100 nF capacitances in Figure 12.10). Inverters: 7404, NAND:7400,

NOR:7402. With reference to the truth tables, verify the stable state [row 4 in a) and row 1 in b)],
starting from rows 2 or 3 (the outputs do not toggle). Verify the disallowed state (outputs both

"high" for row 1 in a) and both "low" for row 4 in b).

Figure 12.11 Synchronous Flip-Flop
As CLOCK signal use the output of a RS flip-flop (Figure 12.10), to avoid switch bounces®.

Verify that this circuit, with CLOCK enabled, is equivalent to the RS Flip-Flop of Figure 12.10a.
Verify that this device does not toggle when Clock is "low". Repeat the exercise using four NOR

gates.

Figure 12.12  Master-Slave flip-flop
Use first 9 NAND gates (7400), then 9 NOR gates (7402). Write the truth table for the second

circuit, and ascertain whether the data are transferred during rising or falling edge in the CLOCK

input. Use 6 LED to test the state of R,S, and of the outputs of master and slave.

Figure 12.13 Type-D flip-flop
Use two 7400 (NAND) and one 7404 (inverters). Try also the equivalent made wit NOR gates
(7402). You may also use one of the two type-D flip-flop of 4013 or 7474 °!

Figure 12.14  Divider-by-two
Use 7474. Try several cascaded stages and test the signals at each output

Figure 12.15 J-K flip-flop

Use two 7400 for the master-slave flip-flop and another 7400 for the two AND gates: two NAND
(half 7400) with shorted inputs (inverters) in series to the other two NAND (NANDs becomes
ANDs). Test the behavior with both J and K "high", then with both "low". Verify the equivalence
to a type-D flip-flop when J is connected to K through an inverter. Try using 7473 as J-K flip-
flop.

90 See http://www.elexp.com/t_bounc.htm or http://www.labbookpages.co.uk/electronics/debounce.html
91 Datasheet: http://www.doctronics.co.uk/4013.htm - about and http://www.ti.com/lit/ds/symlink/sn741s74a.pdf
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Figure 12.16 Type-T flip-flop
Use 7473 or 4027. Drive the CLOCK with a low frequency multivibrator and the TOGGLE input

through a manual switch (between "low" and "high" levels). Obsserve the output at the

oscilloscope.

Figure 12.17 and 12.18 Monostables
Use CMOS gates (4011, 4001): R= 10kQ pot in series to 1 kQ, R;y=100kQ, C=10+100nF,

Cy=1pF. Using TTL gates (7400, 7402), resistors R and R; should be smaller than 470 Q to

avoid an output latch to "high", due to the current fed to ground.

Figure 12.19
Use 7403, 4011 NAND gates, R=100kQ, C=10+100nF, a manual switch to drive input

between "low" and "high" levels. Check the circuit behavior when replacing NAND with NOR
gates (7402, 4001).

Figure 12.20, 22 and 23  Astables
Using TTL gates (7414 for 12.20 and 7402, 7404, 7408 for 12.22 e 12.23): R= 100 Q pot in

series to 100 Q, C=1 pF. Using CMOS gates (4584): R =100 kQ pot, C=10 nF. Observe the
output signal and the signal at the input of gate 1 while varying R.

Figure 12.24 and 12.25
Use 11 inverters, (or better 23 inverters) using four 74L04, or 7404, or 4069. Measure the

frequency and the pulse width. Calculate the risetime of different gates as a function of bias

voltage (2 V <V < 5V), and of the room temperature (use a soldering iron to heat the gates).

Figure 12.26  Delay generator
Use CMOS gates, and a square wave at the input (e.g. circuits of Figures 12.20 or 12.22), and

choose a time constant RC smaller that the half-period of the square wave. Test several types of

gate NAND, AND, OR, NOR (4011,4001,4071,4081).

Figure 13.3 A 555 monostable
Bias: +15V,0V; R; =R,=10kQ, C,=C;=10nF, C=100nF, R=10k€ in series to a 1 MQ pot.

Drive the input with a pulser as that shown in Figure 9.6. Compare signals V;

and Vr, than V; and V, then V; and V., while varying R.

Figure 134 Astable pulser
C,=C=10nF, R,=100 kQ, R;=1kQ in series to a 100 kQ pot. Observe the

output signal while changing R;. Replace R, with the circuit shown here, with
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R =100 kQ pot, and observe how the pot-setting does change the duty cycle (ratio T,/T;) without
affecting the frequency. Test the pulser with different bias: e.g. +15V/0V and £5V.

Figure 13.5 Square wave generator
Ry =1kQ, R, =10kQ in series to a 100 kQ pot C, = C=10nF, R; = 10 kQ pot. Observe the

output signals 1 and 2, while changing the R, value. Displace the load R; to the output 1 and see

the change.

Figure 13.6 Linear voltage-to-frequency converter
OA =TLO081, Timer= ICM7555. R=100kQ, R,=10kQ, C=C,=100nF. (R*=1k€Q to protect

the trigger input). Observe the signals V1 and V while changing the voltage input. Try to change

the values of T and <.
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Appendix A

A simplified explanation of the transistor working principle in linear region

A complete analysis of the transistor reqires using complex models. Here we offer a very short
description that allows understanding most part of common circuits involving transistors.
We only define, without explanation, the I-V characteristics for diode and transistor, and we use a

reduced set of parameters (hg, and h;,) restricting our analysis to small a.c. signals and low

frequencies (for d.c. signals one must take into account the junction bias voltages).

A.l. The diode

A diode is a two-terminal non-linear device made of a junction between two semiconductors, one
P-doped and one N-doped. Near the junction the majority®? carriers (holes in P-doped and
electrons in N-doped) recombine, leaving a "depletion" layer 93 where there are no free charge
carriers. The charges bound to the crystal lattice (positive ions in N-doped material and negative
ions in P-doped material), are fixed, so the electric field, due to this double layer of opposite
charge, limits the diffusion of the majority carriers (electrons frm N region and holes from P
region). This electric fiels, however, does not block the flux of minority carriers thermally
generated inside the depletion layer (eletcrons flowing from P to N and holes from N to P). This
inverse current is nusually named I,

In equilibrium conditions (without external voltage applied to the diode) the inverse current is
balanced by the forward current Iy, due to the diffusion of majority carriers: [=14+1,=0.

The forward current Iy depends on the applied voltage V, on the absolute temperature T and on

the type of semiconductor as follows:
I =Cexp [qV/(nKgT)] (A.1)

where q is the elementary charge, Kg the Boltzman constant, and » a constant that is about 1 for
germanium and about 2 for silicon. Letting KgT /q=V; (at room temperature Vi=26 mV) we get
I(V)=Ce"™i- L.

The constant C is determined by the equilibrium condition: I(0)=0 that gives C=1,, so that we

may write (A.1) as the ideal diode equation: :

(V)=1, (V"™ -1). (A.2)

92 For basic definitions of doped semiconductors, holes, majoriry and minority carriers, depletion layer,.... see for
example: Elementary Semiconductor Physics, H.C. Wrigth, or The Physics of Semiconductor Devices, D.A.
Fraser, or Introduction to Semiconductor Physics, R. Adler, A. Smith, R. Longini, or Semiconductor Devices,
S.M. Sze.

93 The depletion layer thickness is of the order of pm.; see http://en.wikipedia.org/wiki/P—n_junction
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For V>>V; the constant 1 in (A.2) may be neglected with respect to the exponential term:
IV)=Iy=Le" "™ , V>>V,. (A.3)

The slope of the characteristic curve (Figure A 1a) is A/0V = I/(nVy) = (ra) "', ove rq is named

dynamic resistance of the forward biased diode, that increases linearly with T: at room

temperature rq ~26/1(Q/mA).

A
I : ) anode
! + P

,/
/

I, _ N

; V» cathode
Vi
b) V)

Figure A 1

For V <0 the exponential term becomes negligible, so that I(V<0) =—1I,.

The reverse current I, depends on the specific diode, and it is normally quite small, of the order of
1 uA. We may conclude that the diode is essentially a rectifier: it may in fact be approximated as
unidirectional switch. In Figure Alb the characteristic curve is approximated by a piecewise
linear function (the dotted line defined by: I=0 for V< V¢, and I=(V —VF )/rq, for V> V§), where
for germanium diodes Vp=0.6 V and for silicon diodes Vg=0.2 V.

More often, beside neglecting the reverse current, also the dynamical resistance is neglected,
which leads to the ideal unidirectional switch model: when forward biased the diode is assumed
to be a voltage source Vy, when reverse biased it is assumed to be an open switch (Figure Alb).
This model is illustrated in Figure A 2 where the series of the diode and the resistor R (with
R>>1y) is a rectifying voltage divider: the input a.c. signal V; appears at the output without the

negative half-wave (V,).

_____ v
*
S S . Vr
~— =
= >
t t

Figure A 2
In the circuit of Figure A.3 the capacitor placed in parallel to the resistor, is charged during the

positive half-wave through rq and discharged during the negative half-wave through R.
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If R>>1y, the output signal is that shown by the full line (here the effect of Vg is neglected).

|
OB O - Y AV
Vi C N
AT
O O
t
Figure A 3

The amplitude AV of the ouput signal in stationary conditions, is name ripple, may be calculated
as follows. Assuming a constant discharging current =V /R, if AT=1/f is the signal period from
the definition of capacitance (C=q/V) and of current (I=0q/ot) we get AV=VAT/RC, or
AV/V=(fRC)".

A.2. The zener diode

The current flowing across a reverse biased diode is normally very small, even considering the
small leakage current due to the surface conductivity (increasing |-V|) that is added to the reverse
current I,. However, when the reverse voltage reaches the breakdown voltage Vg, whose value
depends on the particular diode, a different process occurs: the avalanche conduction. The high
electric field, within the depletion layer, gives to the electrons enough energy to generate, by
collision, new charge-carrier pairs. This phenomenon leads eventually to the junction distruction,
when the local power dissipation exceeds a limit value.

Some diodes, named zener diodes, are specially manufactured to withstand high reverse voltages

1
Vo t /

without damage.

~ Z +

Figure A 4
The characteristic curve of a zener diode, and the zener graphic symbols, are shown in Figure A4,

where + — signs mark the reverse bias.
The zener diode may be used as voltage stabilizer: for example Figure A 5 shows how the

amplitude of the input signal AV; is reduced in the output ripple AV, .
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tolEJr—o+ |
Vi Vz
Izl
-5 . o V,=Vi —R1,
v
Figure A 5

In Figure AS the axes V, and [, directions are reverted, so that the reverse voltage and the current
are positive. The load line is V,=V; —-RI, . The slope of the load line does slightly change with
the load resistance Ry placed in parallel to the zener, (i.e with the total current I=I,+V, /Ry
flowing across R), but the change in V, remains small, until V; — RI>Vg. The maximum current
I. that can be fed to the load is It =V,/Rp <(V; —V,)/R+ Izmin, Where Izmin is the zener current at

the voltage V.

A.3. The transistor : some definitions

The transistor® is a three-terminal device (collector, base and emitter) made of two p-n junctions

in series , as shown in Figure A 6.

NPN PNP

C C E E
g@ B B B

E E C C T018

| contact electrodes |

o0

Bc 1092

Bipolar Junction Transistor Planar Transistor

Figure A 6

When the two anodes are common we have a NPN transistor, when the two cathodes rae common

94 See http://en.wikipedia.org/wiki/Transistor and http://en.wikipedia.org/wiki/Bipolar junction transistor
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we have a PNP transistor. The two junctions, however must be very close each other and
interacting (we cannot get a transistor by simply joining two diodes!). The charge carriers
injected into the depletion layer of the forward biased junction EB must diffuse into the depletion
layer of the reverse biased junction BC: in other words the diffusion length of the charges
injected into junction EB must be longer than the junction thickness®.

We'll here analyze only the two most common configurations: the common-emitter (amplifier)
and the common-collector (follower), in a.c. regime. We'll study the NPN transistor; for the PNP

the analysis is similar, with reverses bias.

A.4. Common emitter

The transistor linear region®®, also named active region, is a limited area in the I¢ ,Vce plane, as
shown in Figure A7, that gives an example of the characteristic curves I¢(Vce, Ib) of the collector
current I¢ versus the collector-emitter voltage Ve, for several values of the base current Ip,.

In the linear region I. has a weak dependence on Ve, so that, for each Iy value, the Ic=1¢(Vce)

curves may be approximated by horizontal segments.

Figure A 7

Therefore we may define a current-gain coefficient § =I¢/Ip, that does not depend on Iy (in a first
approximation). A second parameter that characterizes the transistor is the ratio Ry, =vpe/ip, which
is the BE-junction effective resistance®’. The current iy, is the dynamic current injected into the
base and vpe the base-emitter dynamic voltage®®. The order of magnitude of Ry, is 1 kQ, and 8

varies for different transistors from 20 to 300.

95 When both BE and BC are forward biased the transistor is in the saturation region, when both are reverse
biased the transistor is in the cut-off region .

96 The transistor /inear region must not be confused with the OA linear region.

97 In the four-parameter model of common-emitter configuration: § = hg and Ry, = hye.

98 Dynamic current and dynamic voltage are defined in §A.5
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The fact that $>>1 may be explained by the following arguments (for NPN transistor). The BE
junction is forward biased and therefore the majority charge carriers in the emitter (electrons)
flow from E to B: most part of these electrons diffuse into the depletion layer of the BC junction
that is reverse biased. This charge flux, modulated by the BE bias voltage, adds to the BC reverse
current. Here also an avalanche current multiplication may occur, due to the high reverse bias,
leading to an increase current gain.

A more detailed treatment of this complex phenomenon may be found elsewere *° .

A.5 Dynamic regime

Let us assume that the transistor in Figure A8a is biased within the linear region.

N Vee

L4
Vee :Vcc

Figure A 8

In Figure A8.b the load line is defined as V.=V —Ril.. To each value of the input voltage V;
corresponds a different value for the base current Iy, i.e a different characteristic curve: the
collector current L. (V;) is determined by the crossing between each curve with the load line.
When the input voltage changes, the working point moves along the load line, thus changing the
output voltage V,=VLe..

We define as dynamic voltages and dynamic currenst the changes of voltage and current,
respectively, with respect to the values taken for a given position of the working point on the load
line (quiescent point, or Q-point'%9). These variables will be written here in low-case v; =V;—Viq,
Vo=Vo—Voq, b=Ip—Ipg, ic=Ic—leq, etc. In this way we may neglect in our analysis the
contribution of constant terms (as bias voltages or juntion voltage drops).

The output dynamic voltage v, is obtained by differentiating the load line equation:

Vo = AVce = A(VCC—RLIC) = —RL AIC = —RL ic.

99 See http://en.wikipedia.org/wiki/Bipolar junction transistor and references therein
100 See http://en.wikipedia.org/wiki/Q-point or http://en.wikipedia.org/wiki/Biasing
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From the definition of voltage gain Ay =v,/v; , and from v; =Ryip, we get:

Av=—(Rr i )/(Rp ip) =— PRr/Ry,

The voltage gain Ay depends on the transistor parameters § and Ry, (which , in turn, depend on
the temperature T). However it is possible to remove the gain dependance on § and Ry simply
adding a resistor Rg in series to the emitter, as in Figure A9.

In Figure A9a the voltage divider (Ri,R,) sets the Q-point of the transistor, and the input voltage
is applied through a capacitor, to avoid the effects of the input source on the transistor bias. If we
assume this capacitor to be large enough, we may neglect its impedance!!. Figure A9b shows the
equivalent dynamic circuit and explicits the BE-junction effective resistance and the current

controlled current source Piy

Figure A 9
The input dynamic voltage vi may be written:
vi= Rpip+Reig = Rpip +Re (1+B)i, = [Rp + Rg (14 p)]ib,
So that the input impedance (neglecting the bias voltage divider and the capacitor) is:
Zi = viliy = Ry+Rg (1+f).
Because $>>1 and R, = 1 kQ, letting Rg = 1 kQ2 we may neglect Ry, with respect to (1+)Rg.
Therefore: Zi=(1+B)Rg=PRg, i.e. the input impedance is approximately f times the emitter

resistance Rg.

The output dynamic voltage is v, =—Rp ic = —f Ry 1, and therefore the voltage gain is :

Ay =Yu_ PR, gR B R Ry
V .
V. R, R, 11BR, R,

which does not depend on the particular transistor used.

Taking into account the voltage divider (R;,R») the effective input impedance becomes:

Zi = Ri||R2||BRe = (1/R;+1/Ry+ 1/pRe) ',

101 1f we work at frequency  , must be C>>1/m(Rq ||R2) (see § 5 and Appendix B).
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and, if the smaller resistance between R; and R, is of the order of Rg,we get Z; =R;||R,.

The output impedance Z, is defined by the ratio v, {i,=0}/ i,{vo=0}, where v, {i,=0} =R,

and 1, {vo=0} = i,=ip. In conclusion: Z,=Ryi/i.=Ry.

In order to optimize the resistance values in the voltage divider R;,R; we note that:

1) to maximize the output voltage range we should choose the quiescent point at Vo= V. /2;
this defines the collector current I¢q ;

2) the given L. defines the emitter voltage V.qo=Rglcq. To keep the transistor inside the active
region must be Vg > Vg, 1.6. Vo> Veq T Ve = Veq+0.6V;

3) the values R;,R; cannot be too high because we need to keep the base current negligible with

respect to the current flowing across the divider: V./(R;+Ry) >> I,

A.6. Common collector (Emitter Follower)

In the common-collector configuration (Figure A 10), the output is taken at the transistor emitter,

with the collector connected at the common voltage V..

Figure A 10
Here the load line equation is Ve =V..—RE 1., and the dynamic ouput voltage (not loaded) is :
Vo = REg ie =Rg (1 +[3)]1b

The input dynamic voltage is vi = Rpyip + Rg 1. = [Rp+Rg (1 +)]ip, so that the voltage gain is:

R
Ay =2 =1/ 14+—2 |,
v, (1+B)R,

For (1 + B)Rg >> Ry, we get!?? Ay=1, showing that the output voltage follows the input voltage
103
The input impedance Z; is:

102For too small values Rg <Ry/(1+ B), also the gain decreases: Ay = [(1+f)Rg/Ry] <I.
103 Note that the d.c. level of the emitter voltage is Vi— Ve = Vi— 0.6 V.
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Zi=(1+B)Rg =B Rg,
(or, accounting for the bias voltage divider) Z; =R, ||Rz||BRE .
Figure A10b shows that the output impedance Z, is the value that, applied as a load for the ideal
voltage generator E,=v,{Ry=00}=v;Ay, halves the output voltage: i.e. vo{RL=Z,}=E,/2. This

last equation may be written as:

V. V.
VolR =Z03= 1+R, /[(1+B)(Z, IR )] B./2= 1+R, /[(1+B)R,]

With some algebra we get Z,=Rg|| [Ry/ (1+f)] <<Reg.

As a conclusion: Z,/Z; =~Ry/Rg 2<<1 . The common collector behaves as a current amplifier.

A.7. Field Effect Transistor (FET)

The transistor described in §A.3— §A.6 is the Bipolar Junction Transistor (BJT), where the
collector and emitter currents are controlled by the base current (current-controlled device).
Other transistors are instead voltage-controlled devices, e.g. the Field Effect Transistors (FET),
where the emitter and collector contacts are named source and drain, respectively, and the base is
replaced by the gate (Figure A11).

The current flowing in the channel, that connects the source to the drain, cis controlled by the

gate voltage, and the leakage current trough the gate is generally negligible (of the order of nA).

Figure A 11

FET transistors may be classified in two classes: the Junction Field Effect Transistor (JFET)
where the control voltage is applied through a reverse biased junction, and the Metal-Oxide-
Semiconductor FET (MOSFET) where the control voltage is applied through an insulating layer.
Within each class we distinguish between n-type channel (n-JFET, n-MOSFET), and p-type
channel (p-JFET, p-MOSFET). The integrated circuits made of MOSFET are named
Complementary-MOSFET (CMOS).



147

Drain and source terminals are almost equivalent, however the source is normally marked as S or
it is drawn closer to gate, in the graphic symbols.

Figure A 12 shows the MOSFET structure and symbols. The working principle for both types is
based on the change of channel cross-section induced by the voltage applied to the gate with

respect to the substrate.

Figure A 12
In JFET the voltage applied to the gate must never forward bias the gate-channel junction, while

in MOSFET the applied voltage is limited only to values that do not produce damage to the thin
insulation layer: for example electrostatic charge build-up may destroy the device.

In JFET with grounded source the gate voltage increases the channel current when it approaces
the drain voltage gate: 01/0V  is positive for n-JFET and negative for p-JFET.

Therefore an n-JFET resembles a npn BJT, and p-JFET resembles a pnp BJT. The input
impedance of JFET is much higher than for BJT, of the order of 1010+ 1014 Q.

MOSFET may be of different types: depletion mode (channel conducting with Vgg=0), or

enhancement mode (channel off with V;q=0). In the first case the channel is doped with the

same sign as drain and source, but with weaker doping; in the secon case the channel is generated
by the bias that produces an inversion layer close to the gate, and the conduction begins at a

threshold value V5g=V!%4.

104 For details http://en.wikipedia.org/wiki/MOSFET or Microelectronics, J. Millman et al.
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Appendix B

B.1. Complex numbers

A complex number!% can be viewed as a point or position vector in a two-dimensional Cartesian
coordinate system called the complex plane. We name imaginary the axis y, and we name real/
the axis x. We may associate to every point (a, b) of the plane the vector that projects the origin

(0,0) into (a,b). This vector represents the complex number C=a+jb. The symbol j is the
imaginary unit (j = J1 and j2=-1). Let m be the vector length: it is the modulus of the associated
complex number C: m=|C|= m.

Im A The angle @ between the vector and the x axis is the

phase of the complex number: @=arctan(b/a), and we

bl } may write C=m (cos@+] sing).
m I
) i The real part of C is a=mcosgp=Re(C) , and the
a R: imaginary part of C is b=msin ¢ = Im(C).
Figure B 1 From the Euler formula!:

exp(je)=cosp+jsing,
we get C=mel?. The complex conjugate of C is the number C (or C*) with the same real part
and imaginary part with opposite sign: C*=a—jb=m e 9.
The sum of two complex numbers is:
C3=C+Cy = (ay +jby) +(ay+jby) = (a; +ap) +j(by +by) = a3+jbs,
with a;=a;+a, and by=b; +b,.
The product of two complex numbers is:
C3=C; xCy=(m; e/P1) x (m, e1¥2) = m| m, /(@17 ¥2) = m, 3,
with m;=m;m, and @;=q;+,.
The quotient of two complex numbers is:

C3 =C1 /C2= (1’1’11 /mz)ej(q’l ) (‘02).

B.2. Sinusoidal voltages and currents in complex notation

Let us consider a sinusoidal current signal: i(t) =1, cos wt, where w =2y is the angular frequency

105 See http://en.wikipedia.org/wiki/Complex number
106 See http://en.wikipedia.org/wiki/Euler%27s_identity
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and v is the frequency. We associate i(t) to the complex number I=1,(coswt +] sinwt), or, in the
polar form 1=1 exp (jwt).

Frequently the notation is simplified by using the complex variable s=o+jw (with o and o real) ,
and letting I(s)= IOeSt. For voltages we similarly let V(s) =VOeSt. Note that this notation, assumed

for sinusoidal signals, is fully general, because any signal may be represented by a (finite or

infinite) series of sinusoidal componebts (Fourier representation!7).

B.3. Complex impedance!’s

Resistors, capacitors and inductors are linear elements that associate the current i(t) to the voltage
drop v(t) across them (where t is the time variable).
The relation v(t) = {Z}i(t) defines the impedance {Z} operator that transforms the current i(t) into
the voltage v(t). For a resistor the impedance is a real constant

v(t) =Ri(t) - {Zg} = {R}.
For a capacitor, from the capacitance definition C=gq/v and the current definition i=0q/0t, we get
i(t)=COq(t)/ot , or by integration:

v(t) = (1/C) [i(t)dt — {Zc} = {(1/C) [dt}.

For an inductor the voltage induced by the magnetic flux variation due to current changes is:

v(t) = Loi(t)/ot — {Z; } = {Lo/ot}.
In the simplified complex notation the corresponding transformations are:
{Zr}1(s) =RI(s) —  {Zg}=R
{Zc}(s) = (I,/O) [e"dt] = (1/sC)I(s) — {Zc} = 1/sC = 1/joC
{Z }1(s) = (I,L)[Oest/ot] = (sL) I(s) — {Z;} =sL=joL

remembering that [e*'dt=est/s and &(est)/dt=se.

Therefore the voltage drop across a resistor, a capacitor or an inductor may be written as:
VRr(s) =RI(s)
V(s) = (1/sC)I(s)
Vi(s) = L) I(s)
The same results are obtained by using the trigonometric notation: I(wt)=I (coswt+]sinwt),

remembering [ cos(x) dx=sin(x), [sin(x) =-cos(x), dcos(x)/0x =-sin(x), dsin(x)/dx =cos(x), and

107 See http://cnyack.homestead.com/files/afourse/fsdef.htm
108 See http://en.wikipedia.org/wiki/Electrical impedance
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B.4. Complex transfer function

Any linear network may be seen as a quadrupole, defined by the complex transfer function
T(s)=A(w) e/®(@) (with modulus A and phase ¢), that transforms the input complex signal V;(s)
into the output complex signal V ,(s)=T(s) V;(s).

In a linear network the transfer function may be always written as ratio between two polynomes:
T(s)=N(s)/D(s). The roots (z;, z,, ...) of the numerator N(s), i.e. the solutions of the equation

N(s)=0, are named zeros (for s=z; , T =0), and the roots (p;, py, ...) of D(s) are named poles (for
s=p;, T diverges).

Therefore we may always write:

(s =2 )(s = 2,)(s—25)...
(s = p)(s = p,)(s = py)...

T(s) =

Poles of a transfer function and stability criteria.

If the real part of all poles is negative, then the overall system is stable. If one pole has a zero
real part, then that component is critically stable. If one pole has a positive real part, then that
component leads the overall system to instability. If the imaginary part of a pole is zero, then that
component does not have any oscillatory contribution. If the imaginary part is not zero then its
value is the frequency of oscillation of the corresponding component of the system. The zeros of

a transfer function do not affect the stability, they affect the transient response of the system.

B.5. Bode diagrams of a transfer function

The Bode diagrams of a transfer function are piecewise linear approximations of the curves A(w)

and ¢(w) in bi-logarithmic and semi-logarithmic plots, respectively.

Let us consider two simple examples in sinusoidal regime.

1) Low-pass L-C filter (Figure B2). We have V (s)=RI(s) and V;(s)=(R+Z;)I(s) so that the
transfer function is: T(s)=V,(s)/V(s)=R/(R+Z;)=1/(1+joL/R)=1/(1+jw/w,). Therefore
A(w)=(1+w? 0)(2))'1/2, and ¢(w)=— arctan(w/m,). The piecewise linear approximation may be
performed in two frequency regions: for w <<w,,, where w,=R/L is the break frequency, we
may approximate A=1, and ¢=0, at ®=w, A=-logV2=0, and ¢=—m/4, while for w>>w, we
may approximate A=w,/w, and ¢p=—/2.

Therefore the Bode plot of A(w) is made by the straight line y=1og|T|=0 and by the straight
line y=log|T|=log(R/L)—log w, while Bode plot of ¢(w) is made by the two horizontal lines
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$=0 and ¢=-m/2, joined by the segment passing through the point (w,,—m/4), with a

slope -45° /decade, in fact ¢(w,/10)=-arctan(0.1) =0, and ¢(10w,) =—arctan(10) =-90°.

Figure B.2
2) High-pass RL filter (Figure B3). Here V,(s)=Z7; I(s) and V;(s)=(Z; +R) I(s) so that the
transfer function is T(s) = sL/(R+sL) = 1/(1+j w,/w). Therefore A(w)=(1+ 0)(2)/032)'1/2, and
$(w)=arctan(w,/w). For w <<w,=R/L we may approximate A= w/w,, and ¢=+m/2, at w=w,
A=-logV2=0, and ¢=-+m/4, while for ® >>m, may approximate A= 1, and ¢=0. Therefore the

bode diagram for A(w) is made by the straight line y=1log|T|=log (R/L)+log w at low
frequencies and by the straight line y=1log|T|=0 at high frequencies. The phase Bode
diagram is made by the two horizontal lines (¢ =-+m/2 and ¢$=0), joined by the segment

passing through the point (w,,+/4), with a slope of —45°/decade.

Figure B.3

B.6. Laplace Transform

Last century, before the advent of electronic calculators, people used the slide rule (also known as
slipstick) to easier perform multiplications and divisions. The trick was to make a logarithmic
numerical transformation , then to use sum and subtraction, then to make the inverse (anti-
logarithmic) numerical trasformation . A similar technique may be applied to functions, instead
of numbers, using Fourier or Laplace transformations!%°.

The Laplace transform L, is applied to a real function f(t), using the following definition:

F©)=LIf(] = [[e™F(0)]dt,

where s is a complex variable and t is a real variable (time).

109 See http://cnyack.homestead.com/files/idxpages.htm and http://en.wikipedia.org/wiki/Laplace transform and
http://www.stanford.edu/~boyd/ee102/laplace.pdf
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It may be proven 19 that (if f(t) =0 for t<0) the following relations hold:

L [f1(t) +£2(1)]

L[af(t)]

Lf(t-t,)]

L[of(t)/ot]

L[ }f(x)dx]
f(e0)

£(0)

L [fi()]+L[f1(D)]

aL [f(t)]

e-Sto L[f(t)]

sLIf(H]-1£(0)

ULt
S

lirrol {sL[f(t)]}

lim{sL[f(t)]}

Fi(s)+Fa(s)
aF(s)
e-Sto F(s)

sF(s)—1f(0)
F(s)/s

lirrol {sF(s)}

ILrE{sF(s)}

Moreover if u(t) is the unitary step function, defined by: u(t)=0 for t<0 and u(t)=1 for t>0:

L u(®)]

and for the exponential function :

L [exp(at)]
From the Euler relation we get also:

L[sin(at)]

L[cos(at)]

T(l e™)dt

fe(a—s)t dt
o

1t 1
2j\s—ja s+ja

_ {1 1
- ~ . + .
2\s-ja s+]ja

1/s

1/(s—a).

al(s2+a?)

s/(s2 +a?2).

To show how to use the Laplace transform in electronics we analyze some simple examples. Let

us first consider the response of an RC high-pass to an input step function.

i(t) —> i —»
vi(t) |—,—o v v J4—ov ()
C R )
R —e
" |
o ' : v 0 o I 0
a) b)

Figure B.4

With reference to Figure B4a and from the definition of current i(t)=0q/0t and capacitance

C=q(t)/v(t), we obtain the equation:

1O A short treatment may be found in Electronics for the Physicist, C.G. Delaney, chapt 12.
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vi(t) = va(t) + vr(t) = (1/C) [ i(t)dt + Ri(t). [bl]
With the Laplace transformation we get the complex equation, for generic functions v(t) and i(t) :
V.(s) = (1/sC) I(s) + RI(s) = (R + 1/5O)I(s). [b2]

On the other hand the output voltage may be written:

vo(t) = Rii(t) = R {L-1[I(s)]} = L1 |V, (5)—RE ] [b3]
" "1+sRC
where L-! is the Laplace inverse-transform. The output voltage may be written also:
Vo(t) = LT [L{vi(®)} T(s)]- [b4]

For an input step function with amplitude V , we get V;(s)=L[V-u(t)]=V/s, and remembering

that L-1 [1/(s+a)] =exp(-at), relation [b3] becomes:
vg(t) = L-I[V/(s + I/RC)] = V exp(—t/RC). bS]

The same result may be obtained from [b4] that is a general relation.
Using this shortcut we analyze the case of the low-pass filter of Figure B4b, whose trasfre

function is T(s)=(1/RC)/(s+ 1/RC), again using the step function for the input signal V;(s)=V/s.

From [b4] we obtain immediately:

vo(H) =L-! =V(1-e t/RC), [b6]

s+1/RC s

1/RC V} _

1 [l 1

s s+1/RC
We may fastly solve even much more intricate cases by using a Laplace transform collection for
many functions, and the corresponding inverse transform,.
In conclusion, using Laplace transforms reduces differential equations down to algebra problems,
and simplifies the qualitative prediction of the effects of complex transfer functions.

A very short list!!! of the functions most commonly used in electronics, with the corresponding

Laplace transform, is given in Figure B.S5.

11 An extended list may be found in http://tutorial. math.lamar.edu/Classes/DE/Laplace_Table.aspx; see also
http://en.wikipedia.org/wiki/Laplace transform
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S F(s)
A
1(t) 1/s step
> (Heaviside)
0 t function
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a<0
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0
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0
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— Oscillating
a<0 2 2 :
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Figure B.5
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Appendix C

C.1. Resistors!i?

Resistors are components that dissipate energy: the dissipated power P (by Joule effect) is
P=RI’=V?/R=VI [watt]. Resistors are commercially available with values in the range from 10
mQ to 1000 GQ (i.e. from 102 Q a 107" Q), and different types may dissipate, without excessive
self-heating, power in the range from 1/8 watt to hundreds watt. We may distinguish six main
types: carbon-resistors, carbon-film, metal-film, metaloxide-film, wire-wound and foil resistors.
In carbon-resistors the resistive element is made from a mixture of finely ground (powdered)
carbon and an insulating material (usually ceramic). A resin holds the mixture together. The
resistance is determined by the ratio of the fill material (the powdered ceramic) to the carbon.
They are available in different sizes that can dissipate power from 0.125 W up to 5 W, and in
different types, with tolerances of 3%, 5%, 10% and 20%, with values from 1 Q to 10 MQ. They
have high temperature coefficient (—0.1%/K) and high electrical noise.

In carbon film-resistors the carbon is deposited on an insulating substrate, and a helix cut in it to
create a long, narrow resistive path, with usually high value (from 10 Q to 100 MQ), good
tolerances (0.5%) and lower electrical noise with respect to the normal carbon-resistors.
Wirewound resistors are commonly made by winding a metal wire, usually nichrome, around a
ceramic, plastic, or fiberglass core. They are available with values from 1 Q to 100 kQ, and
tolerances of 1% or better; power dissipated is usually in the range 0.25W-1W (high power
models can dissipate up to 200W). General purpose types have high inductance (therefore not
suitable for high-frequency applications), but types with anti-inductive winding are also available
(at higher cost). The temperature coefficient is normally low (Sppm/K).

Metal film resistors are usually coated with nickel chromium : the resistance value is determined
by cutting a helix through the coating rather than by etching. The coating may also be ceramic
(cermet) conductors such as (TaN, RuO,, PbO, BiRu,07, NiCr, or BixIr,O7 . Thick film resistors
are manufactured using screen and stencil printing processes. Thin film resistors (igher quality,
more expensive) are made by sputtering (vacuum deposition) the resistive material onto an
insulating substrate; the film is then etched in a similar manner to the old (subtractive) process for
making printed circuit boards. They are available in values from 1 Q to 1000 MQ, with sizes from
0.25 W to 1 W, with a reasonable tolerance (0.1%, 0.2%, 0.5%, 1%, or 2%) and a temperature
coefficient that is generally between 5 and 100 ppm/K; good noise characteristics and low non-

linearity due to a low voltage coefficient.

112 See http://en.wikipedia.org/wiki/Resistor
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Metal-oxide film resistors. are made of metal oxides such as tin oxide. This results in a higher
operating temperature and greater stability/reliability than metal film resistors.

For film or carbon resistors a standard color code is used: the first band indicates the first digit of
the ohmic value, the second band gives the second digit, the third band gives the exponent in the

power of ten multiplier (see Figure C1).

Color code bands

Resistance material
D (carbon composition)

Insulation coating

first digit —* h
second digit —j

Metal leads

]

power of 10 —— T
Tolerance band

Figure C.1

In Figure C2 the correspondence between colors and digits is shown, as well as the sequence of
standard ohmic values commercially available: resistors with 20% tolerance have only the values

shown in bold, resistors with 5% tolerance have also values shown in italic.

Figure C.2
Metal-film resistors with tolerance 0.5 % and 1%, use a four digit numerical code: the first 3
digits give the value, the fourth gives the mutiplier (power of ten). E.g. 1353 means 135x103 Q.
For small values the letter R indicates the decimal (e.g. 10R0 =10.0Q; IR0=1.0Q; R10=0.1Q).
All resistors have a parasitic capacitance C, in parallel and some inductance in series L (usually
negligible below few MHz); the actual impedance of a resistor is therefore Z=R/(1 +jwR C,).
High value resistors (from 10 to 1012 Q) may not be negligible the surface conductivity due to

humidity or contaminants (proper degrasing and hydrophobic surface treatment may help)
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C.2. Potentiometers

The potentiometer!!3 (pot, in electronics slang) is a three

terminal component : two end-terminals, and a sweeping

contact (wiper) in between. It may be used as voltage divider.

By shorting the wiper to one end terminal we get a rheostat

(a variable resistor, mechanically adjusted) as shown in

Figure C3.

Figure C.3

Most potentiometers have cylindrical geometry with a

rotating shaft (6 mm dia) that moves the sweeping contact. In some models the rotating shaft is
replaced by a linearly moving wiper, and miniature-size potentiometers (usually panel-mounted

or soldered onto printed circuits), named trimmers, may be adjusted by a small screwdriver (see

Figure C.4).

Figure C.4
The resistive path may be carbon-film (cheapest , from 5 Q to 1 MQ), conductive plastic or metal
wire (most expensive from 10 Q to 500 kQ. Wire-wound potentiometers may be multi-turn

(helipot, with 4, 10, 15, 20 or 25 turns) .

C.3. Capacitors

Capacitors'!4 are available in a large variety of shapes and types. The specifications for a
capacitor usually include the value of capacitance C, the voltage rating (i.e. the maximum voltage
which can be continuously applied), the temperature coefficient, the leakage current I, (or leakage
resistance R,), the dissipation factor DF.

The capacitance is expressed by the relation C=Keg, 4/d, where 4 and d are the electrode’s area
and separation, €, the permittivity of free space and K the relative permittivity (or dielectric

constant) of the material separating the electrodes. Therefore large C values imply large A4 (i.e.

113 See http://en.wikipedia.org/wiki/Potentiometer
114 See http://freecircuits.org/2012/01/capacitors-basics-working/
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large dimensions) and small d (i.e. maximum voltage limited by dielectric breakdown).

A Rp
\L

Figure C.5

The leakage resistance R,, is the ratio between the applied voltage and the leakage current 1,: it is

the effective resistance in parallel to the capacitor, and it is normally proportional to 1/C (for a

given K the product R,C is constant, and measured in seconds or MQxuF).

The complex impedance of a real capacitor may therefore be written as Z. =R,/(1 +jw R,C).

A capacitor has also a series resistance Ry, and a series inductance Ls, usually negligible (Rs < 1

Q, but sometimes much larger).

The dissipation factor''> DF, measured in sinusoidal regime, is the ratio between the energy

dissipated and the energy stored within one cycle (DF = 1/Q, where Q is the quality factor) and it

is nearly constant in a wide range of frequency f : DF = (P /f)/(CV?/2), which means that

dissipation increases linearly with frequency: P = DF (C V*/2) f.

A related parameter is the loss tangent d is defined as tand=DF is the ratio between real and

imaginary parts tof the capacitor impedance. Ideal capacitor have 6=0 (R,=00).

Capacitors may be made made of two conducting films, separated by an insulating film, spirally

wound into a compact cylinder, or by a ceramic disc with two metal plates on opposite surfaces.

The symbols used for capacitors distinguish normal, elecrolutic and tunable (Figure C.6)
Different models are distinguished by the type of
insulating spacer: air, ceramic, mica, polystyrene,
polyester (PET, mylar), polymide (Kapton), polycarbonate

Figure C.6 (KC), polypropylene, PTFE (Teflon), aluminum oxide,

tantalum oxide, oil, paper, glass!!®.

Air-gap capacitors have a low dielectric loss. Used mainly for large-valued, tunable capacitors

that can be used for resonating HF antennas .

Ceramic and mica capacitors (due to the low K value) have small capacitance but also small DF;

they are useful in high frequency circuitry. They are marked by a color-code similar to that for

resistors, with some differences (Figure C.7).

115 See http://en.wikipedia.org/wiki/Dissipation_factor
116 See http://en.wikipedia.org/wiki/Types of capacitor
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Figure C.7
Among plastic-film capacitors the polyester-type (mylar: K=3.1, DF=0.3) have high voltage
rating, the polystyrene-type (K=2.5) have small voltage rating but very small dissipation
(DF=0.03); the polycarbonate-type (K=2.8) have small temperature dependence (TC~=+300

ppm./K) more details are shown in Table C.1.
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Figure C.8
Electrolytic capacitors (Figure C.8) require the application of a DC bias voltage in order to work
properly. This voltage must be applied with the correct polarity (invariably this is clearly marked
on the case of the capacitor) with a positive (+) sign or negative (-) sign or a coloured stripe or
other marking. Failure to observe the correct polarity can result in over-heating, leakage, and
even a risk of explosion. They have high capacitance/volume ratio, but high leakage. There are
also non-polar types made by two capacitors in series with reversed polarity. May be made of
aluminum-oxide or tantalum-oxide (more reliable but more expensive). The value of capacitance
is written in pF units, even if sometimes the letter p is replaced by "m", and also the maximum
voltage is marked. Also some paper capacitors (not polar) have a mark indicating the external foil
that should be grounded to minimize the pick-up noise.
Some properties of variour capacitors are listed in Table C.1 [the units are Farad (F), with sub-

units : p= pico=10"12, n=nano=10-9, u= micro=10-]



Type Values V max Temp.coeff. Leakage Comments
V) resistance
mica/glass 1pF-10nF 100-600 very good good hf, expensive
ceramic 10pF-100nF 50-3000 fair fair hf, cheap, small
Polymide (Kapton) InF-10pF 10 kV fair good up to 250°C
polystyrene 10pF-1pF 100-300 | good (negative)| excellent for filters
polycarbonate 100pF-30uF 50-800 very good good large size,
polypropylene 100pF-50uF 50-300 good excellent low DF
polyester (Mylar) InF-2pF 10 kV fair good up to 125°C
teflon (PTFE) InF-2uF 200 good best up to 250°C
tantalium 100nF-1000pF 6-100 fair small size
aluminum 100nF-0.001F 3-600 bad bad high C, cheap
oil 0.1 pF-20pF —>10.000 faif good large size
Table C.1
C.4. Inductors
An inductor!'!” is usually constructed as a coil of
conducting material, typically copper wire,
wrapped around a core either of air or of
ferromagnetic or ferrimagnetic material. Cores
with a higher permeability increase the magnetic
field and confine it closely to the inductor, thereby
increasing the inductance. Low frequency Figure C.9

inductors are constructed like transformers, with

cores of electrical steel laminated to prevent eddy currents. Ferrites (ceramics filled by iron
oxide) are widely used for cores above audio frequencies, since they do not cause the large

energy losses at high frequencies that ordinary iron alloys do. Inductors come in many shapes.

Some inductors have an adjustable core, which enables changing of the inductance.

Inductors have always a parasitic resistance R, in series and a parasitic capacitance in parallel

(usually negligible), so that the inductor impedance may be written: Z; <R, +jwL.

It is measured in Henry: commercially available values for air-core inductors are in the range

from 0.01pH to some millihenry (mH), while ferrite-core inductors may have values from 1 uH

up to several henry (with R, ~100Q).

117 See http://en.wikipedia.org/wiki/Inductor




C.5. Diodes

Usually diodes are marked by a line on the cathode side (N). There are several different types:
signal diodes (low power <IW) with small reverse current (of the order of pA, some below 1
nA), rectifying diodes for large forward currents (up to 100 A) with larger reverse currents ( some
mA). The fast rectifiers (switching diodes) have short recovery time (for emptying the junction
depletion layer): 1N4148, IN4150, 1IN4151, 1N4448, IN914,I1N916 have reverse current smaller
than 0.1pA;. Schottky diodes (e.g. BAR10, BATxx, HSCH1001, 1IN5712, 1SS108) are
constructed from a metal to semiconductor contact. They have a lower forward voltage drop than

p—n junction diodes, in the range 0.15 V to 0.45 V, and they have a faster reverse recovery than
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p—n junction diodes, they are recommended for small signals, high frequency.

cathode =

| anode +

Table C.2 lists some common diode characteristics: Vg = maximum reverse voltage (breakdown

voltage), I, =reverse current (or leakage current), V¢ =forward voltage drop I4=forward current,

C=parasitic capacitance.

H
%
H

Figure C.10

cathode

Name Vg I, V¢ I4 C Comments
M) (RA) V) (mA) (pF)

FIT1100 30 001 1.1 .05 1.2 low Iy
IN3595 150 3 0.7 10 8 (fast) low I
IN914 75 5 75 10 4 signal (fast)
1N4148 75 5 5 10 signal (fast)
1N456/9 30/200 0.025 1 40/3 (fast) low I
IN6263 60 10 4 1 1 (fast) low V;
1N3062 75 50 1 20 6 (fast) low C
1N4002 100 50 9 1000 15 rectifier 1A
1N4007 1000 50 9 1000 10 rectifier 1A
IN5625 400 50 1.1 5000 45 rectifier SA

IN1183A 50 1000 1.1 40000 rectifier 100A peak

Table C.2

Zener diodes may have breakdown voltages V, in the range from 250 mV to 1.5 kV.

The series Semtech BZV85CxxVx gives many V, values (V,=2.7,4.7,5.1, 5.6, 6.8, 7.5, 8.2, 8.1,
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10, 11, 12 ...) up to 200 V. Their name xxVx stays for the V, value in volt, where V is the decimal
point. The minimum reverse current I, increases with decreasing V,. For small I, (0.05mA) the
Texas series 1N4678+1N4700 goes from V,=1.8 V up to 25V: the value increases with the
number: 1IN4679=2.0V, IN4680=2.2V etc.

A better temperature stability is achieved by bandgap zeners as the series LM103XX, or LM 199,
LM329, LM113, AD589... (see also § 13.2).

In the Light Emitting Diodes (LED) the cathode is marked by the flat side of the cap, or by a
stripe in metal can, or by the shorter lead (Figure C.10).

Rectifying diodes may be available pre-assembled into Graetz bridge rectifiers (Figure C.11)

Figure C.11

C.6. Solderless breadboard

In order to test an electronic circuit without using soldered junctions we may use a solderless
breadboard, that does not require soldering, and 1is reusable. Moreover it makes easier changing
the circuits or replacing components without risks of overheating.

A modern solderless breadboard consists of a perforated block of plastic with numerous tin plated
phosphor bronze or nickel silver alloy spring clips under the perforations. The clips are often
called tie points or contact points.

The spacing between the clips (lead pitch) is typically 2.54 mm. Integrated circuits (ICs) in dual
in-line packages (DIPs) can be inserted to straddle the centerline of the block. Interconnecting
wires and the leads of discrete components can be inserted into the remaining free holes to
complete the circuit. Typically the spring clips are rated for 1 ampere at 5 volts and 0.3 amperes
at 15 volts (5 watts).

The layout of a typical solderless breadboard is made up from two types of areas, called Terminal
strips and Bus strips. Terminal strips are the main areas, to hold most of the electronic
components. In the middle of a terminal strip of a breadboard, one finds a notch running in
parallel to the long side that marks the centerline and provides airflow (cooling) to DIP ICs
straddling the centerline. The clips on the right and left of the notch are each connected in a radial

way; typically five clips in a row on each side of the notch are electrically connected.
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Bus strips provide power to the electronic components. A bus strip usually contains two columns:

one for ground and one for a supply voltage. Bus strips typically run down both sides of a

terminal strip.

Figure C.12
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Appendix D

Commercial IC: characteristics and pin-out

D.1. Short list of linear IC manufacturers

The first characters of the name in a device give information about the manufacturer.

Manufacturer Initials
Analog Devices Inc. AD
Burr-Brown OPA-(none)
Fairchild Semiconductors TN
Harris Semiconductors HA-(CA)
Intersil Inc. ICL-ICM-FLT
Linear Technology LT
Maxim MAX-(BB-ICL)
Motorola Semiconductors MC-(LF-LM-TL)
National Semiconductors Corp. LF-LH-LM
Precision Monolitics Inc. OP
Raytheon Semiconductors RC-RM
RCA Solid State Division CA-CD
Sprague ULN-ULS-ULX
Siliconix L
Signetics Corp. NE-SE -SU
SGS-Ates LS
Texas Instruments Inc. SN-TL-TLC-(pnA)
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D.2. Pin-out and general data sheets of Operational Amplifiers

The pinout identification is found in each datasheet, but some general features are the following.
Pin numbers run always in clockwise direction (top-view), and pin 1 is the closest to the marker.

The marker (see figure) is a dot, or notch in plastic model and a tab in metal can.

Metal Can Dual in line plastic (DIP)

The characteristics of OA are given by manufacturers within Data Sheets, freely downloadable in
internet, that often include useful suggestions for circuit design!!8.
In the following tables we list some data for the most common IC: the commercially abvailable

devices are thousands and new models are continuously produced.

118 Texas: http://www.ti.com/ww/en/home/three-col/
Analog Devices: http://www.analog.com/en/amplifiers-linear/products/index.html,
Fairchild: http://www.fairchildsemi.com/products/
BurrBrown: http://www.burrbrown.info/ and http://www.datasheetcatalog.net/it/burrbrown/1/
Maxim:.http://www.maxim-ic.com/design/techdocs/app-notes/
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D.2.1. OA with pinout "741"

Name input Vee V) Vos Iy Los , CMMR| A I I,
stage | Min-Max | (mV) | (nA) | mA) | (MH») | @B) | (10°) | (mA) | (mA)

uA741 bipolar 10-36 2 80 20 1.2 90 200 | 2.8 | 20
AD741 bipolar 1044 0.5 30 2 1 110 | 200 | 2.8 15
LS148 bipolar 4-22 1 80 20 1 90 150 1.9 | 25
OPO01 bipolar 1044 1 20 1 2.5 100 | 100 3 6

OP02 bipolar 1044 0.3 18 0.5 1.3 100 | 250 2 6

RC4131 bipolar 7-36 1.5 70 3 4 100 | 160 2 10
NES530 bipolar 10-36 2 65 15 3 90 200 3 10
NES535 bipolar 10-36 2 65 15 1 90 200 | 2.8 10
MC1456 bipolar 10-36 5 15 5 1 110 | 100 3 5

MC1436 bipolar 10-80 5 15 5 1 110 | 500 5 10
LM143/343 | bipolar 10-68 2 8 1 1 90 100 2 20
HA2645 bipolar 20-80 2 15 12 4 100 | 200 | 4.5 10
MC1741 bipolar 1044 6 200 30 1 90 200 | 3.5 10
TLO81 JFET 5-15 5 .03 | .005 3 80 200 | 2.8 10
TL0O71 JFET 5-15 3 .03 | .005 3 76 200 | 2.5 10
TLO61 JFET 5-15 3 .03 | .005 1 76 10 | 0.25 5

TLO51 JFET 5-15 0.7 | 20pA | 4pA | 3.6 85 60 2.3 80
TL031 JFET 5-15 0.5 | 2pA | 1pA 1 87 7 0.2 | 40
LF351 FET 10-36 5 .05 | .025 4 100 | 100 | 3.4 10
ADS515 FET 10-36 04 | 3pA|.3pA] 04 94 40 1.5 10
3528BM FET 1040 0.1 | .2pA | .04pA | 0.7 86 100 1.5 10
CA3140 Mosfet 4-44 2 10pA | S5pA | 3.7 90 100 6 10
CA3160 Mosfet 5-16 2 SpA | SpA 4 90 320 15 12
OPA602 DiFET 5-18 25 | 1pA | S5SpA | 6.5 100 | 100 20 4

7 +Vee

Pins 1-5 are for offset null




D.2.2. OA with pinout 356"
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Name inPUt Vcc % Vos Ib Ios 0, CMMR A IS Io

stage | Min-Max | (mV) | (nA) | mA) | (MHz) | [@B) | (10°) | (mA) | (ma)

LF355 FET 10-36 3 0.03 | 0.003 | 2.5 100 | 100 4 20
LF356 FET 10-36 3 0.07 | 0.007 | 4.5 100 | 100 | 10 | 20
LF357 FET 10-36 3 0.07 | 0.007 | 20 100 | 100 | 10 | 20
OP15 FET 1044 | 0.2 | 0.015/ 0.003 | 6 100 | 240 4 15
OP16 FET 1044 | 0.2 | 0.015/0.003 | 8 100 | 240 7 20
ADS825 FET 5-15 1 0.02 | 0.02 | 41 80 6.5 6 50
LM110/210/310 | bipolar | 5-18 1.5 1.5 | 10 20 100 1 4 5
LM112/212/312 | bipolar | 5-18 1 1 1 0.3 100 | 20 | 03 5
LM216 /316 bipolar | 5-20 | 0.5 5 1005 | 0. 80 30 | 06 | 5
AD504 bipolar | 10-36 | 0.5 80 2 0.3 110 | 1000 | 3 15
AD510 bipolar | 10-36 | 0.02 | 10 - 0.3 110 | 1000 | 3 10
AD517 bipolar | 10-36 | 0.02 5 3 0.25 100 | 1000 | 4 10
nA725 bipolar | 5-20 | 0.5 42 2 0.08 100 | 3000 | 3 5
OP05 bipolar | 6-44 | 0.2 12 | 12 | 06 123 | 500 4 10
OP07 bipolar | 6-44 | 0.01 | 0.7 | 03 | 06 126 | 500 4 10
HA2500 /02/05 | bipolar | 10-20 4 100 | 20 0.5 90 60 4 10
HA2510/12/15 | bipolar | 10-20 4 100 | 20 0.5 90 15 4 10
HA2520/22/25 | bipolar | 10-20 4 100 | 20 2 90 15 4 10
OPA177 bipolar | 10-15 | 0.01 1 1 0.6 60 | 6000 1 20

offset null pins: either 1-5 or 1-8
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D.2.3. Dual operational amplifiers

Name input Vee V) Vos Iy Los , CMMR| A I L,
stage | Min-Max | (mV) | (nA) | (nA) | (MHz) | [@B) | (10%) | (mA) | (ma)

MC1458 bipolar | 5-18 2 80 20 1.2 90 200 | 2.8 | 20
RC4558 bipolar | 5-15 1 40 5 3 100 | 300 7 20
LM158/258/358 | bipolar | 3-18 2 50 10 1 90 200 3 20
LAT98 (#) bipolar | 3-18 2 50 10 1 90 200 3 20
OP04 (*) bipolar | 522 | 03 | 18 | 0.5 1.3 100 | 250 2 6
OP14 bipolar | 522 | 03 | 18 | 0.5 1.3 100 | 250 2 6
OPA2604 FET 4-24 1 0.1 | 0.004 | 20 100 | 100 | 35 12
LATAT (**) bipolar | 5-18 2 80 20 1.2 90 200 | 2.8 | 20
TLO082 JFET | 5-15 5 .03 | .005 3 80 200 | 2.8 | 10
TLO72 JFET | 5-15 3 .03 | .005 3 76 200 | 25 | 10
TLO62 JFET | 5-15 3 .03 | .005 1 76 10 | 025] 5
TLO052 JFET | 5-15 | 0.7 |20pA| 4pA | 3.6 85 60 | 23 | 80
TLO032 JFET | 5-15 | 0.5 | 2pA | 1pA 1 87 7 0.2 | 40
LF353 JFET | 5-18 5 05 | .025 4 100 | 100 | 3.4 | 10
LA772 JFET | 5-18 2 05 3 80 100 3 10

(#) accepts single supply
(*)(**) 14-pin available, with offset null




D.2.4. Quad operational amplifiers
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Name input Vcc (V) Vos Ib Ios w, CMMR A IS Io
stage | Min-Max | (mV) | (nA) | (nA) | (MHz) | (@B) | (103) | (mA) (mA)
MC4741 bipolar 5-18 2 80 20 1.2 90 200 2.8 20
RC4156 bipolar 3-20 5 60 30 3.5 80 100 7 20
LM148/248/348 | bipolar 5-18 2 80 20 1.2 90 200 2.8 20
LM124/224/324 | # bipolar 3-30 2 45 5 1 100 50 0.8 30
OP11 bipolar 5-22 0.5 300 25 2 120 600 3 15
TLO84 JFET 5-15 5 .03 .005 3 80 200 2.8 10
TLO74 JFET 5-15 3 .03 .005 3 76 200 2.5 10
TLO64 JFET 5-15 3 .03 .005 1 76 10 0.25 5
TLO054 JFET 5-15 0.7 0.02 | 0.004 | 3.6 85 60 2.3 80
TLO034 JFET 5-15 0.5 |0.002 | 0.001 1 87 7 0.2 40
LF347 JFET 5-18 3 0.05 | 0.025 3 100 7
nA774 JFET 5-18 10 0.2 0.1 3 70 25 3 25
4 (P +Vee
20 _
N o 1
30
6 O _
_O 7
50 +
9 O _
—O 8
10 o +
130 _
—O 14
120 +

110 Ve

(#) accepts single supply
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D.2.5 Instrumentation amplifiers

INA114,INA115, INA118, OPA2604,0PA177 :
the gain is adjusted by the external resistor R;: G=1+50k€2/ R

D.3. Comparators

Name open Vee Vos Iy Tos Tg Num | Single
collector % (mV) | (pA) (pA) (us) Comp. | Supply

HAILLL yes +15 1 0.1 0.04 | 02 1 yes
LMI111/211
LF111/211/311 yes +15 4 50nA |.02nA |0.2 1 yes
LA710-LM710 no —7+14 | 0.6 20 3 0.04 1 no
LM106/206/306 yes +12 2 20 3 0.04 1 no
LM119/219/319 yes +15 4 0.5 0.1 0.08 2 yes
LM139/239/339 yes +18 2 0.2 0.05 1.3 4 yes
1A139/239/339
LM193/293/393 yes +18 0.1 0.02 1.3 2 yes
pA711-LM711 no -7+14 50 10 0.04 2 no
LP165/365 yes +18 0.1 0.05 4 4 yes
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D.4. Basic list of logic gates (TTL and CMOS)!1°

Type number | number TTL CMOS
of inputs | of gates | drawing | name |drawing | name

Inverter | 6 a 7404 a 4069
AND 2 4 e 7408 c 4081
AND 3 3 g 7411 h 4073
AND 4 2 e 7421 f 4082
NAND 2 4 b 7400 c 4011
NAND 3 3 g 7410 h 4023
NAND 4 2 e 7420 e 4012
NAND 8 | 7430 4068
OR 2 4 b 7432 c 4071
OR 3 3 - h 4075
OR 4 2 - f 4072
NOR 2 4 d 7402 c 4001
NOR 3 3 g 7427 h 4025
NOR 4 2 7425 e 4002
XOR 2 4 b 7486 c 4070
XNOR 2 4 74266 c 4077
Schmitt NAND 2 4 - c 4093
Schmitt Inverter 1 6 a 7414 a 4584

119 pinouts of 74xx series may be found in http://www.romux.com/pinouts/74-series/pin-identification
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