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Foreword 
 
Understanding Integrated-Circuit (IC) electronics is a “brain-tool” that is becoming important in 
a growing number of scientific studies. However the student frequently feels the first approach to 
this discipline as a shock. Several textbooks in fact require that the reader invest a great effort 
before the benefit/cost ratio becomes favorable. 
For example often the textbook starts with a difficult and discouraging introduction on 
transistors. The transistor is indeed the basic element in any IC, but learning its working principle 
is not necessary for learning IC.  
In the modern analog electronic circuits, on the other hand, the basic building block is now the 
Operational Amplifier (OA), not the transistor. And understanding the AO is much easier than 
understanding the transistor. 
Therefore here we start describing the AO and its most important applications, leaving a 
simplified description of diodes and transistors behavior in an optional Appendix (because in 
some special circuit the transistor must be used by itself).  
The goal of this book is to help the first steps of the students (mainly those whose main interest is 
not electronics) to acquire familiarity with the essential elements of analog electronics, making 
possible the understanding of many practical circuits.  
Algebra is the only mathematical tool strictly required: an elementary knowledge of derivative 
and integral is enough. Reading the short resume of the complex number properties and of the 
Laplace transform, in Appendix, should make faster the analysis of the circuits treated in the 
chapter devoted to filters. 
This first English edition of the book is mostly a translation from the original Italian version 
(published by Decibel-Zanichelli Eds., 1991), with some updates.  
This book collects ideas selected from many sources and suggestions of many authors, so that the 
complete list of people to which I am indebted would be extremely long; but I cannot omit to 
acknowledge the main help received by  Lorenzo Bruschi, and the useful proof-reading made by 
Giorgio Delfitto.  
 

 
GIACOMO TORZO 

 
 
Padova, august 2012 
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How to use this book 

This book might be used as theoretical guide to understand various applications of integrated 
circuits, but it was written as practical guide. 
The first chapter is a mere collection of definitions and rules that will be frequently used 
Chapters 2,3 offer a short introduction to the basic OA circuits, and the reader should try 
experimenting some simple exercises suggested in chapter 16 before proceeding to next chapters.  
Next chapters (4-13) give examples grouped by functions: amplifiers (4), voltage sources (5) 
current sources (6), non-linear circuits (7), filters (8), comparators and pulsers (9), oscillators 
(10),  lock-in (11), digital circuits (12) and timers, IC voltage regulators and analog switches (13). 
For all these circuits some suggestions for experimental tests are given in chapters 16. 
At this point the reader may feel confident to try setting up interfacing circuits for transducers or 
sensors, thus exiting from the pure “electronic-world” and entering the wider world of “physics-
laboratory”: chapter 14 offer several examples of simple interfacing circuitry for some physical 
quantities: temperature, pressure, position, light. 
Chapter 15 is devoted to discuss a topic (OA with positive and negative feedback), which is 
rarely treated in most handbooks, without involving too complex math notations. 
Chapter 16 suggests some practical exercises with the circuits described in the previous chapters, 
giving in most cases only suitable values for the passive elements and sometimes also some hints 
for performing elementary measurements. The choice of collecting all exercises in a single 
section avoids distracting the readers with practical details that are not required for understanding 
the circuit’s working principles. 
Appendix A gives a very simple treatment of the transistor and Appendix B is a concise 
collection of math tools, that are frequently used in the rest of the book, and that are briefly 
explained for the less expert reader. Appendix C and D give details on the commercially available 
passive and active components, useful for practical purposes. 
Sometimes references to data available in the Web are suggested, mostly to Wikipedia. 
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1. Introduction 

This short chapter is devoted to those who never studied electronic circuits, and it may be skipped 

by anyone who yet knows what is a network made of current and voltage sources, resistor, 

capacitors and inductances1.  

1.1. Voltage and current signals 

Any physical quantity may be used to transfer information, i.e. as a signal. A signal may be either 

analogic or digital. In the first case one has a smooth change of the physical quantity, in the time-

domain, in the second case the quantity may take only discrete values (usually two): e.g. ZERO 

value (also named NOT, or OFF, or LOW), and ONE value (YES, or ON, or HIGH). 

In electronics two signal are taken into consideration:  voltage (V) and current (I).  

Voltage (unit: volt=V) is a measurement of the electric potential difference between two points in 

a circuit; current (unit: ampere = A) is a measurement of the charge carriers flux per time unit 

from one point of a circuit to another one. 

The charge carriers (unit q=Coulomb) are conventionally assumed to be positive, moving from 

point at higher potential to points at lower potential. In the real world they may be either positive 

(holes in semiconductors) or negative (electrons in metals and semiconductors) 

1.2. Resistors, capacitors, inductances, signal sources 

Resistors are bipolar passive elements, made of conductors connecting two points (A and B) in a 

circuit. The voltage VAB at the resistor’s ends (= potential difference between VA and VB) and 

the current I flowing across the resistor are bound by a linear relation (the Ohm’s Law) VAB = RI, 

where R is a positive constant, that measure the electrical resistance (unit: ohm, symbol Ω). The 

resistance of a homogeneous cylindrical conductor is given, in terms of the material resistivity ρ 

by the equation R = ρl/S, where l is the conductor length and S the cross-section. 

A finite electrical resistance is associated to any conductor; but the copper wires connecting 

various elements in a circuit, due to the low copper resistivity, are normally assumed to have zero 

resistance. 

Capacitors are bipolar passive elements, made of two electrodes separated by a dielectric layer; 

the voltage Vc across the capacitor’s ends obeys the equation Vc = q/C, where q is the charge2 

accumulated at the electrodes and C is a constant named capacity (unit: farad= F).  

———— 
1 For a more detailed introduction: Electricity by A. Shure, or Electronic Circuits and Applications by S. Senturia 

eand B.Wedlock (Chapt. 2); se also  http://en.wikipedia.org/wiki/Network_analysis_%28electrical_circuits%29 
2 The charge q has opposite sign and equal values on the two electrodes. Capacitors may be of different types: see 

app C.3. 
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The wires connecting various elements in a circuit may also be seen as electrodes separated by 

dielectric medium (air), so that they form capacitors distributed in the whole circuit. But the small 

value of these parasitic capacitances makes them negligible in most cases. The current I = ∂q/∂t 

flowing from one electrode to the other one, may be written I = C∂Vc/∂t. 

Inductors are bipolar passive elements, made of a conductor wound into a coil; the voltage 

VL across the inductor’s ends is proportional to the flowing current: VL = L∂I/∂t. The constant L 

is the inductance (unit: henry = H)3, which measures the efficacy of the inductor in changing the 

linked magnetic field when a current flows across it. 

The symbols representing resistors, capacitors and inductors are given in figure 1.1. Details on 

different types of these elements are reported in Appendix C.  

 
Figure 1.1 

An ideal voltage source is an active bipolar device, generating a potential difference between its 

two poles (VAB = V0, also named electromotive force), which does not depend on the current 

flowing across it. A real voltage source (constant: battery, or variable: oscillator, pulser, electrical 

noise ...) always includes an electric resistance Ri, named internal resistance of the source: 

VAB = V0 – RiI. Similarly, an ideal current source is an active bipolar device, generating a current 

which does not depend on the voltage across its terminals. 

1.3. Linearity, superposition, Kirchhoff’s Laws 

A network is said to be linear if in each branch a linear relation4 holds between voltage and 

current. Ideal resistors, capacitors and inductors are linear elements. 

Any linear network obeys the superposition principle5. This principle states that the net response 

at a given place and time caused by two or more sources is the sum of the responses which would 

have been caused by each source individually (i.e. by switching off all the other sources, which 

means replacing all other voltage sources by a short circuit, and all other current sources by an 

open circuit).  
———— 
3 The physical meaning of inductance may be deduced from Faraday’s Law which states that the electromotive 

force (EMF) induced into any closed circuit is equal to the time rate of change of the magnetic flux through the 
circuit. (see http://en.wikipedia.org/wiki/Faraday%27s_law_of_induction) A useful mechanical analogy is 
obtained by substituting the electric current with speed, the induced EMF with inertial force, and the inductance 
with mass. 

4 A function f is linear if for any two inputs x1 and x2
 
f(x1+ x2) = f(x1) + f(x2).  

5 See http://en.wikipedia.org/wiki/Superposition_principle 

R C L
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The following rules hold, named Kirchhoff’s Laws in any linear network: 

1) the algebraic sum of all voltages in any single loop (or mesh)6 is zero; 

2) the algebraic sum of all currents entering a single node is zero. 
 

The first Law is named Kirchhoff Voltage Law (KVL), the second one Kirchhoff Current Law 

(KCL). Using these rules and the Ohm’s Law, solving any linear system becomes quite easy: e.g. 

becomes immediate calculating the equivalence of various combinations of resistors, capacitors 

and inductors (see figure 1.2).  

 
Figure 1.2 

Two resistors R1, R2 [or inductors7 L1, L2] placed in series are equivalent to a single resistor Req  

[or inductor Leq] whose value is the sum of the two values Req = R1 + R2  [Leq = L1+L2]. The 

resistor Req [or Leq], equivalent to two resistors R1, R2 [or L1, L2] in parallel, is 

Req (R1 || R2) = R1R2 / (R1 + R2) [or Leq = L1L2 / (L1 + L2)] 8. The symbol || is frequently used to 

indicate the parallel combination of two elements. 

Two capacitors placed in parallel are equivalent to a single capacitor whose 

value is the sum of the two values Ceq (C1 || C2) = C1 + C2, while two 

capacitors C1, C2 in series are equivalent to a single capacitor whose value 

is Ceq = C1C2 / (C1 + C2). 

A frequent calculation is the subdivision of a voltage by means of two 

resistors in series as shown in figure 1.3. This simple circuit, where the 

———— 
6  A node is a point of the network that join two or more branches, a mesh is a closed loop that starting from a node  

returns to the same node without crossing a brach more than one time. 
7  Here we assume inductors with negligible mutual inductance. 
8 These relations hold only if the inductors do not interact, i.e. if the mutual inductance M is negligible; this occurs 

when the magnetic field linked with one inductor in not linked to the other inductor.  Otherwise one must account 
for M, as in the case of primary and secondary windings in a transformer. 

. 

 
Figure 1.3 
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V
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voltages are referred to the common ground, is named resistive divider. The same current I flows 

through the two branches R1 and R2. The Ohm’s Law gives: Vi = I(R1 + R2) and Vo = IR2.  

By eliminating I from the previous equations, one gets for the output voltage: 

Vo = ViR2 / (R1 + R2) = βVi, where β  is named partition fraction of the input signal Vi. 
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2. Operational amplifiers 

 
A large part of modern electronic circuits is made of Integrated Circuits (IC), which are 

composed by many microelements, both active (as transistors) or passive (as resistors, capacitors, 

inductors…). Among the linear IC most part are operational amplifiers (OA).  

Understanding the working principle of OA is possible without entering into the details of their 

internal structure. They may be considered as black boxes, i.e. as objects completely 

characterized by their functional properties, or by the relations they establish between input and 

output signals. 

2.1. Basic concepts and definitions 

The Operational Amplifier9 (AO) is an integrated circuit, made of resistors, capacitors, diodes 

and transistors encapsulated into a single small container10, plastic or metallic, which is normally 

connected to the rest of circuitry through spring-loaded contacts (Figure 2.1). 

 

Figure 2.1 

The OA may be functionally defined as differential amplifier, i.e. an active device with three 

ports11, generating, at the output port, a voltage proportional to the difference between the 

voltages entering the two input ports. All these voltages are referred to the common potential, 

named ground potential.  

The ratio between the output voltage and the input potential difference is named open loop 

differential gain Ad. The value of Ad for d.c. or low frequency signals (ƒ < ƒo ≈ 100 Hz) is very 

high (Ad ≈ 105). 

———— 
9 The name Operational Amplifier was invented by people who dealt with analogic electronic calculators, (see e.g. 

http://en.wikipedia.org/wiki/Analog_computers These calculators, now superseded by digital calculators, used 
OA in order to process voltage signals executing operations as sum, subtraction, multiplication, division, 
integration etc..  A simple example is here given in chapt 8.4. 

10  The pinout is generally circular in the metal can models and Dual-In-line Package (DIP) in the plastic models. 
More details in Appendix D2. 

11 Some rare models offer also offer also differential output.  

DIP

+
–

Can

+
–
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The graphic symbol commonly used for indicating OA  is shown in figure 2.2. Here V1 and V2 

are the input voltages and Vo is the output voltage, while the symbols (–) and (+) indicate the 

inverting and  non-inverting inputs (or channels), respectively. 

The power supply ports (named +
ccV  and   

� 

Vcc
−  ) in figure 2.2 

are frequently omitted in simplified drawings. The voltages 

supplied to these ports have usually equal values with 

opposite sign (from ± 5 V to ± 20 V) in dual power supply, or 

typically   

� 

Vcc
+  = 3 V ÷ 30 V and   

� 

Vcc
−  = 0 V in unipolar power 

supply. In the following, where there is no different 

specification, the default power supply is dual. 

The OA amplifies the difference Vd = V2 – V1 between input voltages only when the device 

operates in the linear region, that is limited by very small values of |V2 – V1|.  This is due to the 

finite values of both open loop differential gain and of power supply voltages. 

For larger values of |Vd | the OA saturates, which means that its output voltage reaches the limit 

values    

� 

Vcc
+  or   

� 

Vcc
−  , for V2 > V1 or  V2 < V1, respectively. 

The open loop differential gain Ad is the result of superposition of the two channel gains. The 

signal fed to the inverting input appears at the output amplified by a factor (- A–) and added to the 

signal fed to the non-inverting input (which is amplified by a factor A+). As a result we get:  

   

� 

V0 =−A−V1 + A+ V2  [2.1] 

The absolute value of the gain in the two channels is very similar but not identical, so that 

normally  the open loop differential gain is given as their mean value:  

 Ad = 1
2 A+ + A-( ) . [2.2] 

The absolute value of the difference between the two absolute values is named common-mode 

gain: 

 Acm = A+ - A-( )  [2.3] 

It is easy to guess that always Acm << Ad.  

The difference between the two input signals is named differential signal (note that while the 

input signals are referred to common ground potential, the differential signal is a floating signal): 

 Vd   =  V2
 – V

1  [2.4] 

And their mean value is named common-mode signal (referred to ground potential): 

 

Figure 2.2 

V1

V2
V0

+Vcc

-Vcc

–

+
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� 

Vcm = 1
2
(V2 + V1) . [2.5] 

From the above definitions follows that the input signals may be written in terms of differential 

signal and common-mode signals:  

 V1=Vcm- 12 Vd and V2=Vcm+ 1
2 Vd  . [2.6] 

The output signal Vo may therefore be written in terms of Vd, Vcm, Ad and Acm: 

 V0 = A
+V2 − A

−V1 = AcmVcm + AdVd .  [2.7] 

The ratio, measured in decibel (dB), between Ad and Acm is named Common-Mode Rejection 

Ratio (CMRR). Typical value for CMRR is 100 dB.  

 CMRR = 20 log10 (Ad / Acm). [2.8] 

Another important parameter that describes the behavior of real OA is Vos (input offset voltage), 

i.e. the voltage required across the OA input terminals to drive the output voltage to zero.  

Vos is normally small (of the order of millivolt), and many OA provide also pins used to zero this 

offset (offset null pins). The value of Vos depends on temperature 

and on power supply: the sensitivity to such parameters is 

measured as ∂Vos / ∂T (Vos temperature coefficient), typically 

some µV / K, and as PSRR (Power Supply Rejection 

Ratio = ∂Vcc / ∂Vos) of the order of 100 dB. 

The maximum swing of the output voltage Vo, in linear regime, 

has normally12 a value smaller than the power supply value: 

typically   

� 

Vcc
− + 2V ≤  V0  ≤    

� 

Vcc
+ – 2V. 

Figure 2.3 shows an example of dual power supply with negative Vos.  In this figure the Vos value 

was exaggerated in order to make it visible. The linear region is defined as the maximum swing 

of differential input voltage that does not bring the output into saturation. 

The input bias current Ib may be neglected in a first approximation, being small with respect to 

other currents normally flowing within the circuit. The OA have high input impedance13 

(Zin≈ 106÷1011 Ω) and small output impedance (Zout ≈ 1÷100 Ω). The input impedance Zin is the 

ratio between the input voltage and the current injected into the input. The output impedance Zout 

may be seen as the internal resistance of the controlled-voltage-source V0=Ad (Vd) driven by the 

———— 
12 In some OA (named RAIL to RAIL) the output voltage swing cover the full power supply range .   
13 More in details, the input impedances Z1,2of single input terminals differs from the differential input impedance 

Zd: usually Z1,2  > 109 Ω and Zd  ≈  10-2 Z1,2. 

Figure 2.3 
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input differential voltage Vd (see Figure 2.4). 

2.2. The Ideal Operational Amplifier 

The model of ideal operational amplifier, used in simplified analysis, is defined by the following 

approximations for a voltage-controlled voltage source: 

 
Figure 2.4 

 
By using the approximate model of Ideal Operational Amplifier one may reach a faster 

understanding of complex circuits involving OA. Taking into account the non-ideal 

characteristics of real OA may later refine the analysis.  

At first sight the model of ideal OA might appear useless within the linear region, because any 

finite differential input voltage Vd would produce saturation for Ad = ∞. We will however see in 

the next chapter that, by using some negative feedback (that reduces the differential input 

voltage), the OA may be always kept within the linear region.   

2.3. Real Operational Amplifiers 

The following table 1.1 gives a summary of the typical values of essential parameters for 

different types of commercial OA: input stage made by bipolar junction transistors (BJT) or by 

field effect transistors (FET) or by metal oxide transistors (MOS). 

 
Input stage Vos  

(mV) 

I b  
(pA) 

I os 
(pA) 

CMRR 
(dB) 

ω1 
(MHz) 

Bipolar  0.01÷2 ≈100.000 ≈10.000 ≈90 1÷2 
FET   0.5÷5 5÷30 0.5÷5 ≈90 1÷5 
MOS 0.1÷0.5 1 0.5 90÷110 1÷2 

Table 1.1 

The parameter Ios (input offset current) is the difference between the two input currents: 

Ios = | Ib1 | – | Ib2 |. Normally Ios is smaller than Ib by an order of magnitude: (Ios / Ib ≈ 0.1). 
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The open loop differential gain Ad will be simply written 

A from now on.  

It is a complex function of the signal frequency f:  

A = A(jω), (where ω = 2π f is the angular frequency and 

j =   

� 

−1  is the imaginary unit14), that resembles the transfer 

function of a low-pass filter15: A(jω) ≈ A0(1+jω/ω0)-1. 

In a plot of log|A(ω)| versus log(ω), the function |A(ω)| 

may be approximated by a piecewise linear function; in 

this case the  graph is named  Bode plot16 (figure 2.5).  

In fact for ω << ω0 we get |A(ω)| ≈ A0  and for ω >> ω0 we get |A(ω)| ≈ A0 ω0 / ω.   

The parameter fo=2π/ω0 is named break frequency, and it is normally of the order of few Hz.  

The product A0ω0 , where A0=A(0) is the value of gain at zero frequency, is named gain-

bandwidth product (GBP or GBWP).  

The frequency ω1 at which the open loop gain is 1 is named unity-gain frequency and its value 

measures the OA speed. In the Bode approximation we get ω1  = A0ω0 = GBP, and ω1 is the 

intercept on the horizontal axis: in fact for A(ω1) =1 we obtain 20log[A(ω1)] = 0. 

The maximum current (IOAmax) that a common OA may supply to the output shorted to ground is 

of the order of few mA, but there are also models with a power output buffer providing currents 

up to a few ampere17. 

Two parameters closely related to GBP are: the τ (rise time), which is the time required to bring 

the output voltage from 10% up to 90% of the steady value when we fed to the input a step 

signal, and the slew rate, which is the maximum speed of the output voltage changes (usually 

measured in V/µs). The rise time depends on the closed loop gain G, and practically is reciprocal 

of the bandwidth: τ ≈ 1/Δω = G/ω1. The slew rate is generally measured with G=1, and it is 

limited by IOAmax. 

———— 
14 For some details on complex notation and imaginary unit see Appendix B 
15 For details on filters see chapter 8. 
16 See: http://en.wikipedia.org/wiki/Bode_plot 
17 See for example National µA759 and µA791, Siemens TC365, SGS L165, Burr-Brown 3571, ... 
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3. The operational amplifier as signal processor 

 
By providing the OA with negative feedback, using passive elements as resistors or capacitors, 

we obtain an amplifier that has lower gain but much higher stability. Negative feedback means 

that a fraction of the output voltage is fed to the inverting input of the OA. This type of 

configuration is named closed loop, and we’ll use the symbol G to indicate the closed loop gain, 

to distinguish it from the open loop gain A: G<<A. 

With negative feedback, the circuit's overall gain and other parameters become determined more 

by the feedback network than by the op-amp itself. If the feedback network is made of 

components with relatively constant, stable values, the unpredictability and inconstancy of the 

OA parameters do not seriously affect the circuit's performance. 

Using negative feedback we may build circuits that perform on voltage signals operations as sum, 

subtraction, differentiation, integration. 

When the OA operates outside the linear region, we may use both negative and positive feedback 

to obtain switching circuits (threshold detectors, timers, pulsers ...). 

With positive feedback within linear region we may also build oscillators, phase shifters ... 

Most of the devices containing OA may be easily analyzed by using the ideal AO approximation, 

the Kirchhoff’s Laws and the superposition principle.  

In this chapter we’ll study the basic configurations: inverting and non-inverting amplifier, the 

summer and the differential amplifier. We’’ also investigate the effects of finite open loop gain 

(A≠∞) and of finite bias currents (Ib ≠0). 

3.1. Inverting amplifier 

The inverting amplifier circuit is shown in in Figure 3.1.  

We use hereafter the ideal AO approximation.  

From Ib2 = 0, we get V2 = – RIb2 = 0. The role of resistor 

R, whose value is here arbitrary, will be clear when 

we’ll take into account real OA with Ib≠0. 

Assuming infinite value for the open loop gain 

(A = ∞), the input differential voltage must be zero.  

In fact Vd = V2 – V1= Vo / A = 0, i.e. V1 = V2. Moreover, 

because Ib2=0 we get V2 = 0 , so that the feedback 

keeps both the non-inverting and the  inverting 

 
Figure 3.1 
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terminal bound to a virtual ground18.  

Because also Ib1=0 , we get Io = Ii - Ib1 = Ii , and through the Ohm’s Law (I=V/R) we obtain the 

relation (Vi– V1) / Ri = (V1 – Vo) /Ro,  i.e.  Vi  / Ri = Vo /Ro, that gives the closed loop gain 

G = Vo/Vi : 

 G   = Vo/Vi =  – Ro/Ri .  [3.1] 

Relation 3.1 shows that the closed loop gain depends only of the values of Ro and Ri.  

3.2. Non-inverting amplifier 

Another basic configuration is the non-inverting 

amplifier, shown in Figure 3.2.  

The ideal OA approximation gives again V2 = Vi  

because Ib2 = 0, (no voltage across R).  

Also here V2 = V1, because A = ∞, and therefore 

V1 = Vi . Again I0 = Ii - Ib1 = Ii and through the 

Ohm’s Law (I=V/R) we obtain Ii = –V1 / Ri = I0 = (V1 – Vo)/ Ro. 

Replacing V1 b Vi in the last relation we get closed loop gain G = Vo/Vi: 

 G =   Vo / Vi =   1 + Ro/Ri  [3.2] 

Again the value of G depends only on the values of the resistors in the feedback network.  

 

3.3. Voltage follower  

A particular type of non-inverting amplifier is obtained for 

Ri  = ∞ (open circuit): for any value of Ro (e.g. for  Ro = 0, as in 

Figure 3.3) we get G = 1.  

This circuit is named buffer (or voltage follower because 

Vo = Vi).: it offers high input impedance and low output 

impedance; it therefore does not load the input signal and 

approximate at the output an ideal voltage source.   

 

 

———— 
18 A node in a circuit is named virtual ground when it is bound to ground potential without a physical short circuit 

to ground. 
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Figure 3.3 

 

V1

Vi
VoV2

Ri Ii RoIo

Ib1

Ib2R
–
+

–
+

V
Vo

i



  13 

 

3.4. The differential amplifier 

Figure 3.4 shows the circuit of a differential 

amplifier with negative feedback. It may be seen 

as the superposition of an inverting and a non-

inverting amplifier.  

The output voltage is the sum (Vo1 +Vo2 ) of two 

contributions: the one due to the inverting 

amplifier (when we switch-off the source Vi2):   

Vo1 = – (Ro1 / Ri1) Vi1, and the one due to the non-

inverting amplifier (when we switch-off the source Vi1): Vo2 = (1+Ro1 / Ri1)Vi2 Ro2 / (Ro2+Ri2). 

In the particular case of balanced amplifier19: Ri1 = Ri2 = Ri e Ro1 = Ro2 = Ro, we obtain at the 

output: Vo = Vo1 + Vo2  = (Ro / Ri)( Vi2 – Vi1).  

The closed loop gain is therefore: 

Gd = Vo / Vd = Ro / Ri [3.3]

In the more complex case of unbalanced amplifier (Ro1 & Ro2 and/or Ri1 & Ri2) the analysis  is 

made easier if we write Vo in terms of Vcm and Vd: 
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=  [3.4] 

relation that may be deduced from the circuit of Figure 3.5, using the superposition principle. 

In the special case of equal ratios 

Ro1/ Ri1  = Ro2 / Ri2 (= Ro / Ri), eq. 3.4 shows that the 

common-mode gain is Gcm = 0, and the differential 

gain is Gd = Ro / Ri. This demonstrates (for Vos = 0) 

that we may balance the differential amplifier 

simply adjusting one of the four resistors.  

The effect produced by a small unbalance may be 

evaluated letting Ri1 = (1 + x)Ri , Ri2 = (1-x)Ri , 

Ro1 = (1-x)Ro, Ro2 = (1+x)Ro: substituting into  eq. 3.4 yields Gcm " 4x(Ro / Ri) / (1 + Ro / Ri), that 

for Ro >> Ri gives Gcm " 4x. Using precision resistor (x=1%) in the worst case we get Gcm = 0.04. 

 

———— 
19 To balance a differential amplifier means to minimize the common-mode gain (i.e to maximize CMRR). We must 

remember that sole role is played by the output impedances of the sources Vi1 e Vi2, that add up to  Ri1 and Ri2, 
respectively. 
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3.5. Inverting summer 

We may easily add voltages by means of the circuit shown in Figure 3.6.  

Because I1 + I2 + ... In = Io , we get 
  

� 

V0 =−Ro
V1
R1

+
V2
R 2

+ ...
Vn
Rn

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ . With Ro = R1 = ... Rn , more 

simply Vo = – ΣiVi.  

The output voltage may be written Vo = –RoΣi
Ii , where Ii are the currents injected into the 

inverting node.  

 
  Figure 3.6     Figure 3.7 

3.6. Non-inverting summer 

In the non-inverting configuration as in Figure 3.7, the analysis is equally simple. At the node A 

the sum Σ
i
Ii of currents Ii is zero, in fact Ib = 0; by writing Σ

i
Ii in terms of Ohm’s Law (I=V/I): 

  

� 

V1−VA
R1

+
V2 − VA

R2
+ ... +

Vn − VA
Rn

= 0  

or  , letting R* = R1|| R2 ||...|| Rn.  
  

� 

V1
R1

+
V2
R 2

+ ... +
Vn
Rn

= VA
1

R1
+

1
R2

+ ... +
1

Rn

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =

VA

R*
. 

The non-inverting amplifier gives Vo = GVA with G = 1 + Ro / Ri and finally we obtain : 

V0 =G R
* V1
R1

+
V2
R2

+ ...+
Vn
Rn

!

"
##

$

%
&& =G R

*Σi Vi / Ri( ) = ΣiαiVi  

where (αi = R*/Ri ). In other word the output voltage is a linear combination of the input 

voltages.  

If the resistors R1 ...Rn are all equal we get Vo = (G/n) ΣiVi  , which states that the output voltage 

is the mean value of input values.  
For G = n, i.e. Ro = (n – 1)Ri we finally get simply a non-inverting summer of the input voltages.  
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3.7. Effects of bias currents and offset voltage 

 
In order to control the reliability of the ideal OA model, let us now calculate the effects of non-

zero bias currents Ib and non-zero input offset voltage Vos, while maintaining the approximation 

A = ∞.  

The output voltage of ideal OA with zero 

input voltage should be zero for both 

inverting and non-inverting amplifier (note 

that for Vi = 0 the circuits of Figure 3.1 and 

Figure 3.2 are identical. In Figure 3.8 

shows the input offset voltage Vos fed to the 

non-inverting terminal: this is equivalent to 

feed an offset of opposite sign to the 

inverting terminal.  

So the output voltage in the circuit of Figure 3.8 is the result of Ib ≠0 and Vos≠0 for both inverting 

and non-inverting amplifier. 

Assuming A =∞, we get V2 –V1 = Vo/A = 0, and therefore V2 = V1. But now V2 = – Ib2 R + Vos. 

The relation Ii = Io + Ib1 may be written:  –V1 / Ri = (V1–Vo) / Ro + Ib1. Eliminating V1 and V2, we 

get: Vo = Vos ( 1+Ro / Ri ) + RoIb1 – R( 1 + Ro / Ri)Ib2. 

Defining Ios = (Ib2 – Ib1) , and eliminating Ib1, we obtain the relation: 

 Vo = Vos(1+Ro/Ri) – RoIos+ [Ro–R(1+Ro/Ri)]Ib2  [3.5] 

where Ib2≈Ib1>>Ios , the input offset voltage Vos is amplified by a factor (1 + Ro / Ri ).  

A proper choice of the resistor R cancels the third term: for R = RoRi  / (Ro + Ri ), i.e. R= Ro || Ri, 

the effect of bias currents is reduced to RoIos, where the input offset current Ios is normally 10 

times smaller than Ib. This particular choice for R is explained by the fact that it balances the 

input impedances of inverting and non-inverting inputs.  

3.8  Effect of the finite open loop gain 

Let us investigate now the effect of the finite value of the open loop gain for the two basic 

circuits, maintaining the ideal approximations of symmetric channels (Ad = A+ = A- = A , i.e. 

CMRR = ∞, or Acm = 0), and neglecting bias currents (Ib=0).  

The output voltage is again: 

 
Figure 3.8 
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  Vo = A (V2 – V1).  [3.6] 

We’ll use a simplified notation by introducing the parameter β ( feedback fraction), which is the 

fraction of the output signal that is fed to the input terminals. In previous circuits, the feedback is 

fed to the inverting terminal (negative feedback), i.e. β = V1 / Vo, or  β = Ri / (Ro + Ri).  

Let us begin with the inverting amplifier circuit.  

We apply the superposition principle to calculate, at the inverting input, the separate 

contributions of the two sources Vi and Vo, that we rename V1i and V1o.  

The signal V1 at the inverting input may be written as V1 = V1i + V1o with V1i =  (1 – β) Vi , and 

V1o = β Vo. We thus obtain V1 = V1i + V1o = (1 – β) Vi + β Vo.  

Neglecting Ib we get V2 = 0. And substituting these values V1 and V2 into relation [3.6], we 

obtain: 

  Vo = (1 – 1 / β) Vi /{1 + 1/Aβ}  = (–Ro / Ri) Vi / {1 + 1/Aβ}. [3.7] 

The closed-loop gain G= Vo/ Vi becomes:  

 G /{1 + 1/Aβ}, [3.8] 

where G is the value calculated in eq. 3.1 (with A = ∞), that may be written in terms of β, as 

 G = 1 - 1/β. [3.9] 

Let us now investigate the non-inverting amplifier case. 

Here we have V1o= β Vo, and V1i  = 0,  i.e. V1 = β Vo. Neglecting Ib we get V2 = Vi , and using 

again relation [3.6], we obtain: 

  Vo = (1/β) Vi / {1 + 1/Aβ} = (1 + Ro / Ri) Vi / {1 + 1/Aβ},  [3.10] 

Which shows that also for non-inverting amplifier the closed-loop gain is:  

 G /{1 + 1/Aβ}, [3.11] 

when G is the value calculated in eq. 3.2 (with A = ∞) that may be written now as 

 G = 1/β. [3.12] 

The product Aβ is named loop gain, and its reciprocal 1/{Aβ} is named loop gain error, because 

it measures how much the real circuit differs from an equivalent circuit using ideal OA.  

For Aβ >>1 the closed-loop gain is the one calculated in the ideal case.  

In other words, the ideal OA approximation holds until |G| << A. 

3.9. Input and output impedances for real OA in closed-loop configurations  

The ideal OA model gives for the inverting amplifier Zin = Ri , and for the non-inverting amplifier 

Zin = ∞, while the output impedance is by definition Zout = 0.  

The input impedance is defined as Zin = Vi / Iin .  
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In the ideal inverting amplifier the input current is Iin = (Vi  – ε) / Ri, where ε is the closed-loop 

differential input voltage, which is zero in the ideal model ε = Vo  /A = 0 (because A = ∞).  

In the ideal non-inverting amplifier the input current is Iin = Ib2 = 0, by definition. 

A refined approximation for closed-loop Zin and Zout , must take into account the open-loop 

parameters of real OA : A ≠ ∞, Zo ≠ 0 (typically Zo≈ 100 Ω ) finite value of Zin. 

 
Figure 3.9 

Figures 3.9a and 3.9b show models of open-loop and closed-loop real OA.  

We distinguish between the impedances of the input channel Z1,2in and the differential input 

impedance Zd (usually Z1,2in > 109 Ω and Zd ≈ 10-2 Z1,2in). The voltage-controlled-voltage source 

εA, driven by the differential input voltage ε = V2 – V1, is in series with the open-loop output 

impedance Zo  which may be seen as the internal resistance of the source εA.  

However, because Zd <<Z1,2in we’ll neglect Z1,2in , assuming Z1in = Z2in = ∞. 

By definition the closed-loop output impedance is Zout = ∂ Vo /∂ Io, that may be written here: 

 Vo = G Vi  – Zout Io, [3.13] 

equation where the first term at right measures the output voltage with infinite load (ZL = ∞ , zero 

output current), and the second term measures the change of the output voltage due to the current 

Io supplied to the load. 

From the definition of the open-loop output impedance Zo , seen as internal resistance of the 

source εA , we get:  

 Vo = εA – Zo Io. [3.14] 

Let us first consider the case of non-inverting amplifier shown in Figure 3.9b. 

Recalling that V1 = β Vo and V2 = Vi , where Vi is the voltage fed to the non-inverting  terminal 

(we neglect the  voltage drop across the output impedance of the voltage source due to  the bias 

current Ib2). 

The differential input voltage ε may be written ε = V2 – V1= Vi – β Vo , which changes relation 
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[3.14] into : 

 
  

� 

Vo =
A

1+βA

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ Vi −

Zo
1+βA

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ Io =

1/β
1+ 1/ Aβ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Vi −

Zo
1+βA

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ Io  [3.15] 

The first term at right in [3.15] is the same result found in [3.10]→[3.12], i.e. the closed-loop gain 

G ≈1/β (corrected by the factor1+1/Aβ), while the second term, by comparison with [3.13], gives: 

 
  

� 

Zout =
Zo

1 +βA
. [3.16] 

The open-loop output impedance Zo is scaled down, due to the negative feedback, by the factor  

(1 + βA ), which is normally >> 1. A typical example: with G≈100, i.e. β≈10-2 and with A≈105, 

i.e. Aβ≈103, and with Zo ≈100 Ω, we obtain a closed loop output impedance Zout ≈ Zo / Aβ ≈ 0.1 Ω. 

This justify the approximation Zout ≈ 0 that we made for ideal OA. 

To calculate the closed-loop input impedance Zin = Vi / Iin, we note that (assuming Z2in >> Zd)  we 

may write Iin = ε /Zd , or Zin = Zd Vi / ε. Now recalling that ε = Vi – βVo, or Vi / ε=1+β(Vo/ε) we 

finally obtain: 

 Zin =   Zd [1+β(Vo /ε)]   ≈   Zd (1 + βA ), [3.17] 
The approximation shown in 3.17 is due to the voltage drop across Zo : the voltage εA generated 

by the voltage-controlled-source, is divided by the Zo in series  with the load ZL. Therefore 

Vo = εAZL / (Zo+ ZL). Assuming a negligible current20 in the feedback resistor Ro we obtain: 

 Zin = Zd [1+ βA ZL / (Zo + ZL )]  [3.18] 

Relation 3.18 should replace relation 3.17 when  ZL << Zo (e.g. when output is shorted to ground).  

Let us evaluate an intermediate case: Zd ≈10 MΩ, Zo ≈ 100 Ω, ZL ≈ 100 Ω, G ≈ 1/β ≈ 100, A ≈ 105:  

Zin ≈ Zd  (1+βA/2) ≈ 501 Zd  ≈ 500 M Ω. 

We may conclude that the open loop input impedance Zd is normally multiplied, due to the 

negative feedback, by a factor of the order of the 

loop-gain (βA >> 1), justifying the ideal OA 

approximation (Zin ≈ ∞).  

A similar analysis may be carried out, with reference 

to Figure 3.10, for the inverting amplifier. 

Here to calculate Zout we still use relations [3.13] 

and [3.14], but now the differential  input voltage is 

———— 
20 Accounting for Ro we would get a larger Zin , by a factor close to 1/(1– β). 
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ε = V2 – V1 = – V1, because V2 = 0 (to make thing easier we assumed R=0 at the non-inverting 

input).  

Using the superposition principle to calculate V1 = V1i + V1o  , we obtain 

  ε = – V1= –[β Vo + (1 – β) Vi ], [3.19] 

that , with relation [3.14] Vo = εA – Zo Io , gives for Vo  

 
  

� 

Vo =
1−1/ β

1+ 1/ βA

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ Vi −

Zo
1+βA

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ Io . [3.20] 

In relation [3.20] the first term at right is the same result found in [3.7] for the closed-loop gain of 

non inverting amplifier G ≈ 1-1/β, corrected for the loop gain  error.  

Comparing [3.20] with [3.13], we obtain again  the expression [3.16] for the closed-loop output 

impedance Zout = Zo/(1+βA), which is practically zero if  βA>>1. 

Again we may calculate the closed loop input impedance as Zin = Vi / Iin, but now the input current 

Iin is the sum of two contributions: the bias current Ib = –ε / Zd and the feedback current  

If  = ( - ε - Vo) / Ro. With the approximation Vo ≈ εA (again neglecting the voltage drop across Zo) 

we obtain Iin ≈ - ε [1/+(1+A)/Ro], and using ε = – V1, 

 Iin ≈ A V1/ Ro  [3.21] 

The Ohm’s Law gives also Vi= V1 + Ri  Iin , or, using [3.21] Vi≈ (Ro /A+ Ri ) Iin , which yields: 

 Zin = Vi / Iin ≈  Ri + Ro / A  ≈ Ri. [3.22] 

The closed-loop input impedance of the real inverting amplifier therefore approximates Ri, the 

same predicted  by the ideal OA model where both input terminals are bound to virtual ground. 
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4. Some examples 

In this chapter we’ll study some examples of differential amplifiers with variable-gain, and one 

amplifier, which may switch from inverting to non-inverting configuration by simply changing 

the value of two resistors. These circuits may be used as building blocks when drawing more 

complex systems, as we’ll see in the next chapters. 

4.1. Differential with variable-gain 

To change the gain of the differential amplifier of Figure 3.4 while keeping it balanced, we 

should properly adjust two resistors, e.g. by using mechanically-coupled potentiometers. 

This difficulty may be by-passed using the 

circuit of Figure 4.1 where the gain is adjusted 

by a single potentiometer, after it has been 

balanced by a proper choice of the six 

resistors (R' and R"), i.e. letting Ri'= Ri"= Ri ,  

Ro'=Ro"= Ro  and  Ra'= Ra"= Ra.  

Using the ideal OA approximation Ib ≈ 0, so 

that we may write the two equations:  

 (V1 –Vx) / Ri = (Vx –V3) / Ro    and    (V2 –Vx) / Ri = (Vx –V4) / Ro,  [4.1] 

where we assumed Vx' = Vx" = Vx  because A ≈ ∞.  

By subtracting the second equation from the first one we obtain:  

 (V2 –V1) / Ri = (V3 –V4) / Ro.  [4.2] 

The ohmic value of the potentiometer R may be written R = x Ro, and using the Kirchhoff Current 

Law at the nodes V3 (i1 – i = i3) and V4 (i2 + i = i4), we obtain the two equations:  

 (Vx–V3)/Ro– (V3–V4)/xRo = (V3–Vo)/Ra [4.3] 

 (Vx–V4)/Ro+(V3–V4)/xRo = V4/Ra.  [4.4] 

By subtracting eq. [4.3] from eq. [4.4] we get:  

 Vo/ Ra = (1+Ro / Ra+2 / x) (V3–V4) / Ro.  [4.5] 

Finally, by substituting the quantity V3–V4 =(V2 –V1) Ro/ Ri  taken from [4.2] into [4.5], we 

obtain the closed-loop differential gain Gd= Vo / (V2–V1) : 

 Vo = (1+Ro/Ra+2/x) (Ra/Ri) (V2–V1). [4.6]  

 
Figure 4.1 
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In the simplest case Ra = Ro the variable gain is : 

 Gd = 2(1+1/ x)(Ro / Ri ) . [4.7] 

4.2. Differential with linear variable-gain  

In the previous example the gain is a non-linear function of R. Using two OA we may obtain a 

linear adjustment of the differential gain.  Hereafter we describe three possible configurations.  

The circuit of Figure 4.2 may be easily understood by considering OA2 as inverting amplifier for 

the source Vo. The feedback is provided by the potentiometer R with feedback factor β=x/(1-x). 

The gain is therefore G2 = – 1/β = – (1–x)/x = 1–1/x. To avoid the saturation of OA2 for x→ 0, we 

should place a resistor R' in series to xR. Here to make simpler the analysis we’ll neglect R' , 

keeping in mind that  x-value must have a lower limit.  

 
Figure 4.2 

Using superposition principle with V1,V2 and G2Vo sources, we may write: 
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Solving with respect Vo, we get 

  Vo = (Ro/R1)(V2–V1)/(1–G2) = x (Ro/R1)(V2–V1) [4.9] 

So that the differential gain is linear: 

 Gd = Vo/(V2–V1) = x Ro/R1 [4.10] 

The maximum gain is for x = 1, i.e. for G2=0: in this case this circuit is equivalent to that of 

Figure 3.4.  Note that two pair of resistors (Ro and R1) need to me matched. 

A similar configuration is show in Figure 4.3, where the potentiometer is replaced by a resistive 

divider made of a variable resistor xR and a fixed resistor R; moreover no feedback is fed to the 

inverting input of OA1, but a negative feedback is provided by OA2, still acting as inverting 
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amplifier with gain G2 = –1/x. Also here a resistor R' should limit the value of G2  to avoid 

saturation of OA2. 

 
Figure 4.3 

Using superposition principle with V1,V2 and G2Vo sources, we now use the open-loop gain A, 

that we assume A → ∞. 

 
  

� 

Vo =−AV1
Ro

R1 + Ro
+ AV2

Ro
R1 + Ro

+ AG2Vo
R1

R1 + Ro
 . [4.11] 

Solving for Vo we obtain: 

 Gd =
Vo

V2 −V1
= Ro

R1 +Ro

⎛
⎝⎜

⎞
⎠⎟
/ 1
A
+ R1
x(R1 +Ro)

⎡

⎣
⎢

⎤

⎦
⎥ ,  [4.12] 

that for A = ∞ gives again Gd = x Ro/R1.  

Also here two pair of resistors (Ro and R1) need to me matched. 

In the third configuration (figure 4.4) OA1 is a an inverter (inverting amplifier with G=-1) and  

OA2 is an inverting summer with G2 = –xR / R1 for the two sources V1 and  - V2. 

 
Figure 4.4 

Also here two pair of resistors need to me matched (R1 and R2 ): moreover, a good choice would 

be R1 =R2 in order to balance the input impedances of the two channels. 
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4.3. Differential amplifier with variable –gain and high Zin 

In the basic differential amplifier of Figure 3.4 (but also in the circuits of Figures 4.1, 4.2, 4.3, 

4.4) the input impedance cannot be made very high, in order to avoid vanishing 21 feedback 

currents. 

If the sources feeding the inputs of the basic differential amplifier have large output impedances 

Zout1,2 in relation [3.4] we must replace Ri1 by Ri1 + Zout1, and Ri2 by Ri2 + Zout2. This will affect 

mainly the value of Gcm. To avoid this inconvenience we may use the circuit shown in Figure 4.5. 

 
Figure 4.5 

To make easier the analysis of this circuit we may start by studying first a simpler one: that 

obtained removing the branch drawn as dotted line in Figure 4.5. Deleting the potentiometer xR, 

OA1 behaves as non-inverting amplifier, yielding : V3 = (1+Ro/R1)V1.  

On the other hand OA2 behaves as inverting amplifier for the source V3 and as non-inverting 

amplifier for the source V2, yielding : Vo = (1+R'1/R'o)V2 – (R'1/R'o)V3. Letting R'1 = R1, R'o = Ro, 

we get Vo = (1+R1/Ro)(V2–V1), that is a differential amplifier with fixed gain Gd = (1+R1/Ro). 

In order to make variable the gain, we insert the potentiometer xR which injects the current 

I = (V2–V1)/xR into OA1 and the current –I  into OA2. This current adds a voltage –I Ro at the 

OA1 output, which is amplified of a factor (–R'1/R'o) by OA2, and  it adds a voltage I R'1 at the 

OA2 output (as we have already seen in the summer circuit of Figure 3.6).  

Putting all together we obtain: 
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⎠ 
⎟ ⎟ (V2 − V1) ,  [4.13]  

that for R1 = Ro = R, gives: Vo = 2(1+R/xR)(V2–V1). Note that also here we must obviously set a 

lower limit to x. Relation [4.13] shows that the gain control is not linear. Good matching of four 

resistors is required (R'1 = R1, R'o = Ro). 

———— 
21  The current flowing in the feedback must always be much larger than the bias currents. 
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4.4. Instrumentation amplifier 

A frequently used circuit, shown in Figure 4.6, offers the same advantages of the previous one, 

i.e. high Zin and variable gain, but now we also get symmetric channels.  

 
Figure 4.6 

We may repeat the trick previously used: without potentiometer xR, the circuit is a basic 

differential amplifier with a buffer at each input. Therefore the output voltage is  

 Vo= (Ro/R1)(VB–VA),  [4.14] 

with VA=V1 and VB=V2.  

The potentiometer xR injects the current I = (V2–V1)/xR into the buffer OA1 and subtracts the 

same current from the buffer OA2, producing  (§3.5) the voltage – I R2 at the output VA of OA1 

and the voltage +I R3 at the output VB of OA2 :  

 VA =  V1–R2(V2–V1)/xR,     VB = V2+R3(V2–V1)/xR [4.15] 

We obtain the same result using the superposition principle, considering the sources V2 and V1 

first at the output VA then at the output VB. 

VA =  V1(1+R2 / xR) –V2(R2 / xR) VB =  V2(1+R3 / xR) –V1(R3 / xR). 

The voltage difference (VB–VA) at the input of the basic differential amplifier is: 

 (VB–VA) = [1+ (R2+R3)/xR] (V2–V1), [4.16] 

which gives the output: 

 Vo = (Ro/R1) (VB–VA) = (Ro/R1)[1+ (R2+R3)/xR] (V2–V1) [4.17] 

In this circuit, frequently named instrumentation amplifier, the gain value is set by a single 

resistor. Usually R2≈R3, and a resistor in series to xR limits the gain. 
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4.5. Amplifier with linear gain control from –K to +K 

The circuit shown in Figure 4.7a allows changing the gain from negative to positive values, by 

adjusting the potentiometer R  

 
Figure 4.7 

This circuits becomes an inverting amplifier with G = –Ro / R1 for x = 0 (figure 4.7b), and a non-

inverting amplifier with G = 1+Ro / R2 for x = 1 (figure 4.7c).  

In fact, for x = 0, V1 is a virtual ground (V2 = 0) and resistor R2 has no effect. For x = 1, V1 = Vi, 

and resistor R1 has no effect. Resistor R in both cases loads the source Vi.  

In the intermediate cases (0 < x < 1) we simply use the relations:  I1 = I2 + Io and V1 = V2 = xVi.  

First relation may be written (Vi–V1) / R1 = V1 / R2 + (V1 – Vo) / Ro , and using the second one we 

obtain :  Vi (1–x) / R1 = x Vi / R2 + (x Vi – Vo) / Ro, that yields the gain G: 

 Vo/ Vi = G = Ro / R1 (x -1) + Ro / R2 x + x. [4.18]  

If we choose the three resistors Ro , R1, R2 in order to satisfy the equation Ro  / R1 = 1 + Ro  / R2 =K 

we make the gain to change linearly from -K to K. 

Relation [4.18] in fact becomes G = K(2x – 1). 

A particularly useful case is K = 1, obtained removing R2 (R2 = ∞) and setting Ro  = R1. This 

circuit may be used as multiplier ±1 by switching the non-inverting input between source and 

ground. 

The input impedance varies from R and R || R1: in fact the input current is the sum I + I1: 

Zi= Vi/ (I1 + I) = R R1 / (R1 + R[1–x]). 
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5. Reference voltage sources 

 
A Voltage Reference (VR) is a source that generates voltage that does not depend on the output 

current, on temperature and on time (it approximate the ideal voltage source). It must have, 

therefore, a negligible output impedance and high temperature and time stability.  

A battery which has an electromotive force Eo is not a voltage reference because its internal 

resistance Ri depends on the charge (increasing while the battery discharges) so that the voltage V 

across the load RL decreases with time: V = Eo – Ri IL . 

A battery followed by an OA, as shown in Figure 5.1, is a better approximation of VR, because 

the current Ib drained from the battery is small, independent on the load value, and therefore the 

output voltage V = Eo – Ri  Ib well approximates Eo. In the circuit of Figure 5.1 the output voltage 

Vo may be changed by adjusting the resistors R1 and R2. Because Vo = Eo(1 + R2/ R1), a 

potentiometer replacing R2, gives a linear voltage regulator.  

In the circuit of Figure 5.1 still the output depends on the battery temperature (that affects Eo 

value). Battery may be replaced by a Zener diode22 as in the circuit of Figure 5.2, where the 

unregulated input voltage V may be the OA power supply Vcc, and the output becomes:  

Vo= Vz(1 + R2/ R1).  

Note that Vz depends on the zener current Iz, that depends on V:  Iz = (V–Vz) / R. 

5.1. Voltage sources with zener in the feedback 

Because Vz depends (slightly) on the zener bias current Iz, it may be affected by changes in the 

supply voltage; to avoid this problem we may use the circuit of Figure 5.3, where the zener is part 

of the feedback loop, which keep constant the bias current Iz.  

To analyze this circuit, let us first neglect the divider Ra, Rb and diode D, and we assume that the 

zener is biased by Vo>0.  

———— 
22 Details on the zener diode may be found in Appendix A.2. Here it is enough to know that above a threshold value 

of the inverse bias current, the voltage Vz across a zener diode depends weakly on the current. The value of Vz 
(named zener knee voltage) depends on the type of zener.  

     
 Figure 5.1 Figure 5.2 
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Using ideal OA model we may write: V1 = V2,  V2 = Vz, and V1 =β Vo =VoR3 / (R2 + R3) . Putting 

all together we get: Vo = Vz (1 + R2 / R3). The choice for 

Vz , R2 e R3 must be compatible with the condition 

 Vz <Vo < Vcc, to avoid saturation.  

The zener bias current is Iz = (Vo – Vz) / R1 = VzR2 / R1R3, 

i.e. a constant value. The value of R1 should be 

maximized (in order to leave  most of output current 

available for the load RL) but with an upper limit set as 

R1<VzR2 / IzminR3 (to properly bias the zener above the 

threshold Izmin).  

The divider (Ra, Rb) is only needed to start the reverse current through the zener, and to avoid the 

second stable state, with a forward biased zener (Vo < 0) : the voltage VF across a forward biased 

zener has in fact a strong dependence on the current. The divider (Ra , Rb) must satisfy the 

relation V3 = Vcc Rb / (Ra + Rb) < Vz, so that, after 

startup, the diode D is reverse biased. 

A similar circuit is shown in Figure 5.4. In this case 

we get again V2 = VoR3 / (R2 + R3), but now 

V2=V1=Vo –Vz which yields: Vo = Vz (1+ R3 / R2).  

The function of the voltage divider (Ra, Rb) and 

diode D, is the same as for the previous circuit. 

5.2. Dual voltage source 

A circuit that provides double output voltages (+Vz and –Vz), is shown in Figure 5.5.  

Here the zener is biased through the diode D and resistors R1 , R3 ; note that the cathode of D is 

connected by R3 to –Vcc in order 

to correctly startup the system.  

The zener bias current is properly 

set by R1: Iz = (Vz–VF) / R1, where 

VF is the forward voltage of D.  

The output voltage of OA1 is +Vz, 

, while the output of the inverter 

OA2 is –Vz.  

Figure 5.3 

 
Figure 5.4 

 
Figure 5.5 
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6. Voltage-to current converters 
 
If you need to use a resistance thermometer23 you’ll have to measure the voltage across a resistor 

while keeping constant the current flowing across it. This means that the current fed to the 

resistor must be independent on the resistor value.  

This chapter illustrates some examples of circuits named voltage to current converters, or 

voltage-controlled current sources, that supply currents (independent of the load24) whose value 

may be controlled by a voltage source. 

6.1. Floating load 

If the load can be floating (i.e. none of its terminals non physically grounded), the voltage-

controlled current-source may be one the two circuits shown in Figure 6.1 . 

Here the load RL is inserted into the feedback loop. In both cases the current IL=Vi /Ri  flowing 

across the load is controlled by the input voltage Vi and scaled by the resistor Ri. When Vi>0, the 

direction of the current is that marked by the arrow. When Vi < 0, the output voltage changes sign 

Vo as well as the current direction. 

  
Figure 6.1 

 
In the circuit 6.1a the voltages at the load ends are Vo and Vi, the input impedance is high (the 

OA closed-loop input impedance Zin) and the current is limited25 either by the maximum value 

supplied by the OA, or by the value Imax ≈ Vcc / (Ri + RL).  

In the circuit 6.1b the voltages at the load ends are Vo and virtual ground, the input impedance is 

Ri , current is limited either by the maximum value supplied by the OA, or by the value 

Imax = Vcc / RL. 

 
———— 
23 More details on this topic are given in chapter 14.1 
24 Common OA supply currents of the order of few mA. Special models can provide currents up to some A (e.g. 

MP38) An alternative is to use a power output buffer made by discrete components (transistor): see Appendix A.4 
25 The maximum output voltage Vo depends on the model: normally | Vo | ≈ | Vcc | – 2V, where Vcc <30 V . Special 

OA may provide larger output swing (e.g. LM143 : 130V , LME49811 :100V, MP38: 200V, MSK103 : 350V) 

Vi

Vi

> 0

> 0

< 0
Vi

Vo

Vo
I  =      /

LI

R i

> 0

RL

L

–
+

–
+

a) b)

R iRLR i

LI



  29 

 

6.2. Floating power supply 

If the OA may be powered by batteries, we may use the circuit shown in Figure 6.2a. 

 
Figure 6.2 

The analysis may be made easier by redrawing the circuit as shown in Figure 6.2b, where all the 

voltages are referred to the floating ground (F.G.), and we easily discover it is equivalent to a 

non-inverting amplifier for the signal ( –Vi).  

Applying the superposition principle to the sources Vi and V'G =βV'o we get: V'o = –A[Vi+V'G], 

where V'G = V'oRi / (Ri + RL), or V'o = –A[Vi+V'oRi / (Ri + RL)].  

Rearranging the last relation we obtain V'o = –AVi/[1+ARi/(Ri+RL)], that, for A → ∞, gives 

V'o = –Vi(1+RL / Ri).  

The potential of the floating ground (referred to real ground) is VFG = Vi.  

Because Ii=IL , Ii= VFG /Ri and  IL= - Vo/RL   we have IL= - VFG /Ri. 

6.3. Loaded ground with floating control voltage 

If a floating control voltage is available (as a battery for d.c. signal or a transformer for a.c. 

signal) we may use one of the circuits shown in Figure 6.3 

 
 Figure 6.3 

In both cases Vo = VL+Vi, in the first one because Vo = V1, V1 = V2 e V2 = VL+Vi, in the second 
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one because Vo = V1 +Vi, V1 = V2 e V2 = VL. And, because IL  = Ii  , we obtain 

IL = VL / RL = Vi / Ri.  

Both circuits may use an OA with unipolar power supply. The maximum available current is 

achieved for Vomax  ≈ Vcc, that yields: 

 ILmax  ≈ Vcc / (RL + Ri). 

6.4. Voltage-controlled current source with all signals referred to ground 

When full reference to ground is required we may use the current source shown in Figure 6.4. 

We must find the relation between VL and Vi.   

In the ideal OA model (Ib1 = Ib2 = 0): the current 

conservation at the non-inverting node gives: 

(Vo – VL) / R3 = VL / (RL||R2) ,  and at the inverting node: 

(Vi – VL) / R1 = (VL – Vo) / Ro. 

 The quantity (Vo – VL), calculated from the second 

relation and inserted into the first relation, and using 

the identity (RL||R2) = RL R2/(RL+R2), gives:  

 

 
  

� 

IL =
VL
RL

= Vi
R2Ro

R L(R2Ro −R1R3 )− R2R1R 3[ ]  [6.1] 

In relation [6.1] we see that IL still depends on the value of RL, but if we properly choose the 

values of  Ro , R1, R2 , R3 , so that R2 Ro= R1 R3 (i.e. R3 / R2 = Ro / R1) ILis independent of RL: 

 IL = – Vi / R2 [6.2] 

The maximum available current is limited by the relation |Vo| < |Vcc|.  

Considering that the voltage VL  may be written VL = Vo(RL || R2)/(RL || R2 + R3), from IL = VL / RL 

we get ILmax < Vcc / [RL(1+ R3/ R2)+R3]. To maximize IL we must minimize R3.   

The capacitor placed in parallel to the load helps preventing self-oscillations that might be due to 

the positive feedback when the output is not loaded (note that for  RL=∞ positive and negative 

feedback fraction are equal, so that the OA works at open-loop). 

  

 

Figure 6.4 
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6.5. Voltage-controlled current source with two OA 

A circuit, similar to the previous one, but with high input impedance is shown in Figure 6.5. 

 

Figure 6.5 

In this circuit we must carefully match the three resistors R, so that R = R1 + R2,; in this situation 

the output current becomes independent of the load RL : IL = –2Vi/R1.  

The analysis may begin considering that OA2 is a basic inverter (V2 = –V1); OA1 acts as 

inverting amplifier for the source VL with gain (–R/R2), and as non-inverting amplifier for the 

source Vi, with gain (1+R/R2). Moreover the voltage VL may be calculated by superimposing the 

effects of the two sources V2 and V3 : V2 divides over (R1 , RL || R2) and  V3 (=Vi) divides over 

(R2 , RL || R1). 

The result is for V2 and VL:  

 V2 = –V1 = –[–VL (R/R2)+Vi(1+R/R2)],  [6.3] 

 VL = V2
RL || R2

R1 +RL || R2

+ Vi
RL || R1

R2 +RL || R1
 [6.4] 

By substituting [6.3] into [6.4] and dividing by RL, we get  

 IL = –Vi(R2+R–R1) / [RL(R2+R1–R) + R1R2], [6.5]  

Where it is clear that, for R = R1+R2 , IL becomes independent of RL, i.e. :  

 IL = VL/RL =  –2 Vi / R1. [6.6] 

The largest voltage swing takes place at the nodes at the V1 and V2 and must be V1| = |V2| < |Vcc|: 

using relations [6.3] and [6.6] we obtain ILmax < 2Vcc /[R1 + (R1+RL)(1+R1/R2)]: which suggest to 

use small values for R1. The capacitor is also here useful to avoid self-oscillations when load is 

removed. Note that here 5 resistors must be carefully matched: 3 identical R and then R1,R2, 

(with R1<R2) such that R1+R2 =R. 
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A similar circuit is shown in Figure 6.6. Here OA2 

is a follower and AO1 as non-inverting summer for 

sources Vi and VL scaled by the divider (R2 , R4). 

Here the condition that makes IL independent on the 

load RL is   R1 / R2 = R3 / R4 

Because I5= IL, we may write IL = (Vo–VL) / R5, and 

we only need to calculate Vo–VL.  

First we note that OA1 is a non-inverting amplifier 

so that Vo = (1 + R3 / R1)V1. The voltage V1 is the 

superposition of the sources Vi divided by  (R2 , R4), 

and of VL divided by  (R4 , R2): V1 = ViR4 / (R2+R4) + VLR2 / (R2+R4). 

The last two equations give: 

 Vo = VL
1+R3 / R1
1+R4 / R2

+ Vi
1+R3 / R1
1+R2 / R4

 [6.7] 

If we let R3 / R1= R4 / R2  , the coefficient of VL in [6.7] becomes 1, and observing that 

(1+x)/(1+1/x)=x , we finally get Vo–VL = Vi R3 / R1, and therefore: IL = ViR3 / R5R1.  

Because the value of R5 is arbitrary, we may control the value of IL  by adjusting R5 (using a 

potentiometer) instead of adjusting Vi. 

The maximum achievable current ILmax  is limited by the condition |Vo| = (RL + R5)IL < |Vcc|, i.e. 

ILmax < Vcc / (RL+R5).  In this circuit we need to trim the value of a single resistor (e.g. R4, once 

R1, R2 e R3 have been chosen).  

Also here the capacitor C is needed to avoid self-oscillations for RL = ∞ (no load). 

6.6. Current source with potentiometric control 

All the previous voltage-to current converters may become current sources controlled by a 

potentiometer by simply using for the input voltage Vi the output voltage of a variable reference 

voltage source (circuits 5.1 – 5.4) 

Another simpler solution is that shown in Figure 6.7, where we use unipolar power supply and 

load referred to ground. 

 
Figure 6.6 
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The output current is IL= V2 / RL , the same flowing 

across R (Ib=0). Because the OA is a follower 

V2=V1=Vo, and the voltage drop across R is the same 

as that across the zener Vz .  As a consequence the 

output current is IL = Vz/R, where R may be freely 

adjusted (above a minimum value Rmin, as well see). 

The maximum current is ILmax = (Vcc– Vz) / (RL + Ro),  

so that a good choice is Vz << Vcc, while Ro should be 

selected to provide Izmin < Iz < IAOmax, where Izmin is the threshold zener current, and IAOmax is 

the maximum current available at the OA output.  

Because Iz = (Vcc – Vz) / Ro – IL the limits above defined for Iz set limit values to Ro as follows: 

(Vcc – Vz) / (IAOmax + Izmin) < Ro < (Vcc – Vz) / IZmin. 

The minimum value for  R which corresponds to ILmax, is set by the condition: 

Vz/Rmin  ≈ (Vcc–Vz) / (RL+Ro),   i.e.   Rmin > (RL+Ro)Vz / (Vcc–Vz). 

 
Figure 6.7 
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7. Non linear circuits 

In the previous chapters were described several circuits essentially made of AO and resistors, 

where the current and voltage signals are processed linearly. By introducing non-linear elements, 

as diodes, we may obtain many different non-linear devices. In this chapter we analyze some 

examples of rectifiers, peak detectors, and basic logarithmic and exponential amplifiers. 

7.1. Half-wave rectifier 

The rectifier is a device that passes positive signals and blocks negative signals. The diode, by 

itself is a basic half-wave rectifier, because it approximates an unipolar switch, i.e. a switch 

driven by the sign of its bias26.  

The transfer function f of an ideal half-wave rectifier Vo=f (Vi ) is f (Vi)=Vi  for Vi >0 and  

f (Vi)=0 for Vi <0. 

In  Figure 7.1a. we show the passive circuit that approximates an half-wave rectifier.  

 
Figure 7.1 

Figure 7.1a shows that the transfer function of this circuit differs from the one of the ideal half-

wave rectifier. The negative signal is cut almost completely: a small part is left Vo = –RL Io, 

where Io is the diode reverse current (of the order of few µA). For positive input voltages the 

output only approximates the ideal function Vo=Vi , the effective output is Vo=Vi –VF < Vi , 

where VF ≈ 0.6V is the voltage drop across the forward biased diode. 

The circuit of Figure 7.1b is a better approximation of an ideal rectifier:  by inserting the diode 

D1 into the OA feedback, we strongly reduce the effect of the forward voltage drop VF. 

To understand it we first neglect the diode D2. When Vi > 0, the output V3 tends to rise up to the 

voltage AVi (where A is the open-loop gain). But the diode D1, forward-biased, feeds the 

positive voltage to the inverting input through Ro. The negative feedback blocks V2 at the value 

———— 
26 For more details on the diode see appendix A.1. 
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V2 = Vi, so that V3 = Vi + VF. Because Ib ≈ 0 the voltage drop across Ro is negligible and Vo ≈ Vi. 

The effective error may be calculated by taking into account the real finite value of the open-loop 

gain A. The differential input voltage is ε=V1 – Vi = VF / A. By considering also the finite bias 

current: Vo = Vi – (RoIb + VF / A)  = Vi – ΔV. For example with A ≈ 10+5, Ib ≈ 0.1 µA, Ro ≈1 kΩ we 

have ΔV ≈ 0.1 mV.  

For Vi < 0, the negative feedback is lost and the output voltage V3of the OA saturates:  

V3 = –Vcc . The diode D1 is switched off and the reverse diode current Io gives: Vo = –RLIo.  

To avoid possible latch-up, i.e. the freezing of the OA at saturation (see chapter 9), we may 

establish negative feedback through the diode D2, that for Vi < 0, gives V2 = Vi and V3 ≈ Vi –VF. 

In this case, however, for Vi > 0, we get Vo = ViRL / (Ro + RL), and we must use a very high value 

for the resistor Ro (Ro >> RL) to approximate the output to zero: Vo = ViRL / (Ro + RL).  

This choice requires using a FET-input OA to retain the ideal OA approximation (Ib negligible 

with respect to the feedback current Ir = Vi / Ro).  

This problem is avoided by the inverting half-wave rectifier shown in Figure 7.2. 

 
Figure 7.2 

Here, for Vi < 0 (V3  > 0) the negative feedback is supplied by R' and D1, while D2 is reverse-

biased and can be neglected. In the ideal OA approximation (Ib = 0, A = ∞) we have V1 = V2 = 0, 

Vo/R' = –Vi/R, i.e. Vo = –(R'/R)Vi and V3 = Vo+VF. With R = R' we get Vo = –Vi.  

For Vi  > 0 the negative feedback is supplied by D2 (D1 reverse biased): V1 = V2 = 0, V3 = –VF,  

and Vo = V2 – R'Io ≈ 0.  

7.2. Full-wave rectifier 

A full-wave rectifier has the transfer function Vo = | Vi | . One example is shown in the circuits of 

Figure 7.3 with two OA: the first one has a twin-diode feedback and the second one is a basic 

differential amplifier. Diode D1 switches-on for positive input and diode D2 for negative input. 
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Figure 7.3 

Two conditions must be satisfied: Ro' = Ro, R1/R1'= R2/R2' to give  Vo = (RoR2 / RiR1) |Vi|  . The 

gain G=(RoR2 / RiR1)  may be set by a single resistor (Ri), so we may also get G=1.  

Another full-wave rectifier that requires matching 

only two resistors (R = R') is shown in Figure 7.4: 

it is made of the circuits of Figure 7.1b and 7.2, 

placed in parallel.  

OA1 is a follower for positive input and OA2 an 

inverter for negative input. Here we may release 

the condition Ro >> RL, because for negative 

input the output voltage is set by OA2. The 

capacitor helps rejecting self-oscillation 

increasing negative feedback when Vi  > 0. 

A third full-wave rectifier is shown in Figure 7.5.  

Here OA1 is the inverting half-wave rectifier described in Figure 7.2, that gives 

V1 = –(R'1/R1)Vi, for Vi > 0, and V1 = 0 

for Vi < 0.The voltage V1 is added to the 

input Vi by the inverting summer AO2. 

If the resistors satisfy the condition 

R2 = (Ri/2)(R'1/R1) the output voltage is  

Vo = (Ro/Ri) |Vi| =G |Vi|. 

A simple choice is R'1 = R1 = Ri =R and 

R2 = R/2, that, for Ro = R gives G=1. 

The circuit of Figure 7.5, however, does 

not offer high input impedance. An alternative full-wave rectifier with high input impedance is 

shown in Figure 7.6.  
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Figure 7.6 

Here OA2 works as inverter for the signal V2 = Vi, with G = –R'/R, when Vi <0 because the D2 

feed full negative feedback to OA1 (follower). When Vi > 0, we get Vi = V2 = V1 and no current 

flows across R and R' , so that Vo = Vi. If  R = R' we get Vo =  |Vi|. 

 Resistor R1 is needed to forward bias the diode D1 for  Vi  > 0, and to supply the bias current Ib+ 

to AO2 when Vi < 0. 

A simple variant of the previous circuit is shown in Figure 7.7, where the resistor R2  is added at 

the inverting input of OA1, imposing however a gain G>1 for the full-wave rectifier. 

 
Figure 7.7 

For Vi < 0 we find again Vo = –(R’/R)Vi = –GVi. 

For Vi > 0 , because diode D1 is reverse biased, by neglecting its reverse current we may write the 

current conservation along the resistors R, R’ and R2: Vi / R2 = (V1–Vi)/R = (Vo–V1)/R’, where 

we also used the equation V2 = Vi. By eliminating the variable V1 we obtain: 

Vo = [1+(R+R’)/R2]Vi = [1+(G+1)R/R2]Vi, where G=R'/R. By choosing R2 = R (G+1)/(G–1) we 

obtain Vo = G|Vi|. Here always G >1, because for G = 1 must be R2 = ∞ i.e. again circuit 7.6. 

Another example of full-wave rectifier with high input impedance is shown in Figure 7.8.  

 
Figure 7.8 

For Vi < 0 the diode D2 is switched-off and the non- inverting OA1 gives: V2 = (1+R2/R1)Vi, 
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while OA2 amplifies both Vi and V2: Vo = (1+R4/R3)Vi – (R4/R3)V2 = (1 – R4R2/R3R1)Vi. 

For Vi > 0, the negative feedback establish V1 = V2 = V3 = Vi, and no current flows across 

resistors R2, R3 (and R4), so that Vo = Vi. In order to achieve Vo = |Vi| we must set 

R4R2 / R3R1 = 2, e.g. R4 / 2 = R2 = R3 = R1. 

7.3. Peak detector 

An half-wave rectifier loaded by a capacitor becomes a peak detector for positive input voltages. 

An example is given in Figure 7.9a, and Figure 7.9b shows the time evolution of input (dashed 

line) and output (full line) voltages. 

 
Figure 7.9 

In the analysis of this circuit we first neglect the resistor R, and we assume only positive input 

voltages. Within the ideal OA model (Ib = 0), the capacitor is charged through the diodes D2 and 

D1 to the peak value Vp of the input voltage Vi , and the output Vo keeps this value also when Vi 

becomes smaller than Vp, assuming Io = 0 for the diodes reverse current. With real diodes (Io ≠ 0) 

when Vi < Vp, the voltage V1 saturates at -Vcc , and the capacitor C slowly discharges through the 

diodes reverse biased. Adding the resistor R, the voltage V2 is held to the peak value Vp =Vo, by 

the negative feedback of OA2.  

There is no more voltage drop across D1 and the reverse current vanishes, so that the capacitor 

holds its charge (if we still neglect the bias input current of OA1) . The reverse current of D2 is 

supplied by OA2 through R. 

A negative peak detector is obtained by reversing the two diodes: the output voltage keeps the 

minimum values assumed by negative input. 

This circuit may be improved by adding a second feedback (R2 in Figure 7.10) which cancels the 

effect of finite Ib in OA1, which is now drained from OA2 and not from the capacitor C. 

The third diode D3 speeds-up the device by blocking V1 at the value Vp–VF.  
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Figure 7.10 

OA1 should be selected for high differential input and OA2 for low bias currents. 

7.4. Logarithmic and exponential amplifiers 

Logarithmic and exponential amplifiers allow multiplication and division of analogic signals, and 

they could be used to build analogic computers. Their more common application, however is for 

signal compressing or expanding, in order to change the reading scale. For analog multiplication 

and division the most used devices are the transconductance IC27.  

Her we give only a brief analysis of the working principle of logarithmic and exponential 

amplifiers in basic examples.  

 To understand the behavior of the following circuits we must refine the approximation of the 

diode used until now (the unipolar switch model), adopting the ideal diode model28. The ideal is 

as a non-linear element defined by the following voltage/current relation: 

 Id(V) = Io exp(qV/KBT) [7.1] 

where V is the forward voltage, Id the forward current, and Io the reverse current (or leakage 

current);  KB= 1.38×10–23 J / K is the Boltzmann constant, T the temperature in Kelvin, 

q= 1.6×10–19 Coulomb the electronic elementary charge. At room temperature (≈ 300 K) 

KBT/q ≈ 26 mV. This approximation is good until V >> KBT/q, i.e. Id >> Io. 

7.4.1. Logarithmic amplifier 

By replacing the feedback resistor with a diode in an 

inverting amplifier, as in Figure 7.11, we obtain an 

output voltage proportional to the logarithm of the input 

voltage Vi, assuming Vi>0. 

 

———— 
27 Tranconductance multipliers and dividers are treated in detaild i in Linear Integrated Circuit Applications, G.B. 

Clayton, chapt. 6, in Operatinal amplifier and applications, W.G. Young chapt 6, and in Introduction to 
Operational Amplifiers: Theory and Applications, J. Wait et al., chapt 3. 

28 For more details on the ideal diode model see Appendix A.1. 
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In fact, by neglecting Ib, for the ideal diode we obtain:  

 Ii = Vi/Ri = Id = Ioexp(qV/KBT)  [7.2] 

From Figure 7.11 we have Vd = V1 –Vo , and therefore Vi/Ri Io = exp(–qVo/KBT).  

Taking the logarithm :  

 Vo = –(KBT/q) ln (Vi /IoRi)  =  –2.3 (KBT/q) log10 (Ii/Io)  =  –S (log10 Ii – log10 Io)  [7.3] 

where the scale factor S=2.3 (KBT/q) depends on temperature with slope ∂S/S∂T = 0.003 oC–1. 

The temperature dependence is also contained in the term log10Io which approximately duplicates 

every 10 oC ; moreover the magnitude of Io depends on the diode type, ranging from 1 nA to 1 

µA.  

 
Figure 7.12 

The ideal Vd (Id) curve is normally obeyed by real diodes for max three decades in Id. For an 

extended range we may use a transistor connected as a diode , i.e. with the collector shorted to 

the base electrode, as in Figure 7.12a. 

Another configuration, also named transdiode29, is shown in Figure 7.12b. Here the collector and 

base electrodes of the transistor are kept at the same voltage through the negative feedback 

(collector at virtual-ground) so that the effective behavior is the same of ideal diode.  

In the circuit of Figure 7.12b the Id covers up to 10 decades (up to a few mA) and the output 

voltage spans about 0.6 V. 

The scale factor (S≈60 mV/decade) may be 

changed using the circuit of Figure 7.13. 

We have Vd = –V1, and neglecting the 

feedback current with respect to the current 

flowing across the divider (R1,R2), we 

obtain V1 = VoR1/(R1+R2), i.e.: 

———— 
29 For more details on transistors see Appendix A.3 and for transdiodes see Operational Amplifiers, G.B. Clayton, 

chapt. 5. 
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V0 = − R1 +R2

R1
2.3 KBT

q
⎛
⎝⎜

⎞
⎠⎟
log10 (Ii / I0 ) ≈ − 1+ R2

R1

⎛
⎝⎜

⎞
⎠⎟
60 log10 (Vi / R1I0 )       [mV/decade].  

The scale factor S, for R2 ≈ 16 R1, becomes S ≈1 V/decade. Moreover, using for R1 a PTC 

thermistor with temperature coefficient ≈ 0.3% oC–1, S becomes temperature independent.  

In Figure 7.13 the capacitor Co helps avoiding self-oscillations and the diode D1 protects the 

transistor that could burn under excessive reverse bias. A more complete analysis should account 

for the bias currents Ib of the OA. 30 

By assembling two logarithmic amplifiers and one differential amplifier we obtain an analog 

divider (figure 7.14). 

 
Figure 7.14 

The output voltage is: V0 =
R0

R1
KBT
q

⎛
⎝⎜

⎞
⎠⎟
ln(V2 / V1) . Note that here the dependence of the diode 

leakage current Io vanishes. 

7.4.2. Exponential amplifier 

An exponential amplifier can be obtained from the 

circuit of Figure 7.11 by interchanging diode and 

resistor in the feedback network : the result is shown 

in Figure 7.15.  

Using the ideal OA model, and for input voltages 

satisfying the relations 0.1 < Vi<  0.6 V and 

I1 = Id <1 mA  we get the output voltage: Vo = –R1I1 = –R1Io exp(qVi/KBT). 

———— 
30 More details on logarithmic amplifiers are given in Operational Amplifiers, G.B. Clayton, chapt. 5, or  

Operational Amplifiers and Applications, W.G. Young, chapt. 6. 
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8. Active filters 

In this chapter we analyze filters, i.e. circuits whose transfer function depends on the frequency. 

The transfer function is the ratio between the output signal and the input signal A filter modifies 

both the amplitude and the phase of sinusoidal signals: in mathematical language, we may say 

that the transfer function of a filter is a complex function31 . In a low-pass filter, for example, the 

low frequency signals remain unchanged while high frequency signals are attenuated. 

Examples of passive filters are the capacitive and inductive dividers (RC and RL filters), 

described in Appendix B. The active filters offer the advantages of low output impedance and 

high input impedance, and they may also have gain G>1. 

In the literature we may find many recipes for designing filters with any transfer function 

(Butterworth filters, Tchebeyscheff filters, Bessel filters). Generally the filters are classified by an 

order number n (with n = 1,2,3,4...) depending on the number n of the poles of their transfer 

function32; where n may be seen as the number of passive RC filters that should cascaded to 

approximate such filter. 

In this chapter we analyze the active filters most frequently used: first order filters, multiple-

feedback filters, VCVS filters, state-variable filters, and filters using impedance converters (NIC, 

gyrators). 

The first order filters are the low-pass (integrator) and the high-pass (differentiator);  the all-pass 

(phase-shifter) will be described in §10.3. 

The multiple-feedback filters, and VCVS filters (Voltage Controlled Voltage Source) here 

described will be those of order 2: higher order filters are generally obtained by cascading filters 

of this type. The state-variable filters use the technique of analog calculators and are made of 

active integrators and summers. The circuits NIC (Negative-Immittance-Converter) use OA with 

both positive and negative feedback to transform an impedance (Z) into its negative (–Z), and 

gyrators convert (Z) into its reciprocal (1/Z). 

8.1. Active Integrator  

By replacing the feedback resistor Ro in the inverting amplifier of Figure 3.1 with a capacitor we 

obtain an active integrator.  

———— 
31 Complex (or vectorial) notation of signals is briefly treated in Appendix B. See also 

http://en.wikipedia.org/wiki/Complex_number A time-dependent voltage signal V(t) may always be seen as 
superposition of a large (or infinite) number of sinusoidal signals, and it may therefore be represented by a 
function which is a sum of sine waves. In the complex notation the sinusoidal signal is 
Vexp(jωt) = V(cos ωt + j sin ωt), where j is the imaginary unit .  

32 A definition of poles and zeroes in a transfer function is given in Appendix B.4 
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In Figure 8.1a, the voltage Vc(t) across the capacitor C changes with time t due to the charge q(t) 

carried by the current Ic(t).  

 
Figure 8.1 

In the ideal OA model (Ib=0) we get  Ic(t) = IR(t) = Vi(t)/R.  

Because Vc(t) = –[V1–Vo(t)], from V1 = V2 = 0, we obtain: 

V0(t) = −VC =
−q(t)
C

= − 1
C

IC(t)dt∫ = − 1
RC

Vi(t)0

t

∫ dt +V(0)  

where we used the definition I(t) = ∂q(t)/∂t.  The product τ = RC, named time constant, is the time 

required to bring the output voltage from zero to the same constant voltage applied to the input.  

In Figure 8.1b the resistor Ro, in parallel with C, provides the necessary d.c. feedback:  without  

Ro the finite input bias current (and input offset voltage) of real OA produce an output that brings 

the output (even with Vi = 0) at saturation (positive or negative depending on the Vos and Ib 

values). 

For a.c. signals it is better to describe the circuit response through the transfer function 

T(jω) = Vo/Vi. The capacitor impedance33 is (Zc = 1/jωC ), so that the ideal integrator of Figure 

8.1a  may be seen as an inverting amplifier with complex feedback with G(jω)=Vo/Vi = –ZC/ZR: 

T(jω) = –1/jωRC, 

Therefore the OA saturates at zero frequency, i.e. the output drifts to ±Vcc for any d.c. input 

voltage , making this circuit useless for  any practical application. 

By introducing the resistor Ro the transfer function becomes: 

 T(jω) = −
ZC ZR0
ZR

= − R0

R
⎛
⎝⎜

⎞
⎠⎟

1/ (R0C)
1/ (R0C)+ jω

= G ω0

ω0 + jω
. [8.1] 

where ω0 = 1/RoC is named cut frequency. 

The module of T(jω) is T(ω) = ω0G / ω2 +ω0
2 , and the phase is φ = arctan(–ω/ω0). From now-on 

———— 
33 The complex impedance id described in more details in Appendix B . 
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the module of the transfer function will be named A(ω) = |T(s)|. For d.c. signals or low-frequency 

signals (ω << ω0 ), A(ω) is practically constant A(ω) ≈G =  –(Ro/R), while for high frequencies 

(ω >> ω0) the transfer function approximates the one of the previous circuit: T(jω) ≈ –1/jωRC.  

The phase shift at high frequency is –π/2. At the cut frequency ω0 we get: A(ω) = G/ 2  and 

φ(ω0) = –π/4. 

The integrator is therefore a low-pass filter of order 1 (the transfer function has one pole, i.e. one 

zero at the denominator). 

8.2. Differentiator  

By replacing the input resistor Ri in the inverting amplifier of Figure 3.1 with a capacitor we 

obtain the active differentiator of Figure 8.2a.  

 
Figure 8.2 

Because Ib=0, the capacitor C is charged by the current Ic(t) = IR(t) = ∂q(t)/∂t , where q(t) is the 

charge accumulated on the capacitor electrodes, and the voltage Vc(t) = [Vi(t) – V1] = q(t)/C. The 

ideal OA model (V1 = V2 = 0),  gives Vo(t) = – RIc(t) = – R ∂q(t)/∂t  , and therefore: 

 Vo(t) = – RC ∂Vi(t)/∂t  

The transfer function is T(jω) = –R/Zc(jω)  = –jωRC,: A(ω) =|T(jω)| is zero for ω = 0 and increases 

linearly with frequency. This enhances the high frequency noise , making this circuit  not 

practically usable. A substantial improvement is obtained by adding an input resistor Ri  as in 

Figure 8.2b  The new transfer function becomes (by simplifying the notation with s = jω)  : 

 T(s) = − R
Zc(s)+Ri

= − R
Ri

⎛
⎝⎜

⎞
⎠⎟

sRiC
1+ sRiC

⎛
⎝⎜

⎞
⎠⎟
= − R

Ri

⎛
⎝⎜

⎞
⎠⎟

s
1/ RiC + s

= G s
ω0 + s

 [8.2] 

Here the cut frequency is ω0  = 1/RiC, and the gain, still increasing with frequency, saturates at 

G= –R/Ri at frequencies ω>>ω0 . More precisely, we get A(ω) =| T(s) | = ωG / ω2 +ω0
2 , and 

φ = arctan(ω0/ω), i.e. the phase shift becomes +π/2 for ω >> ω0.  At the cut frequency A(ω0)= G /

2  , and  φ(ω0) = +π/4.  The differentiator is a high-pass filter of order 1.  
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8.3. Multiple feedback filters 

Multiple feedback filters of second order are made by one OA ad a passive network with 

impedances Zi (R and C) in the general layout of Figure 8.3. 

 The transfer function of this circuit 

may be easily calculated by observing 

that node B is a virtual ground 

(VB = 0), I3 = I5 because  Ib =0 , and by 

imposing the current conservation at 

node A : I1 = I2 + I3 + I4, and at node B: 

I3 = I5  . 

The first equation (node A) may be 

written, using Ohm’s Law: 

I1 = − Vi −VA
Z1

= VA
Z2

+ VA
Z3

+ VA −Vo
Z4

= I2 + I3 + I4  

At node B we have: 

5
5

o

2

A
3 I

Z
V

Z
V

I =−== , 

which gives VA = –Vo Z3 / Z5 ; replacing VA in the first equation and solving for Vo we get 

T(s) = Vo / Vi : 

 
1Z/)Z/ZZZ+Z()ZZ/()ZZ(

Z/Z-= T(s)
5143435243

14

+++
 [8.3] 

where we wrote the complex impedances Zi(s) simply as  Zi  

This is the general form of T(s) for all the second order multiple feedback filters, that we’ll use to 

obtain the particular T(s) in special cases.  

We will analyze the three main cases: low-pass filter, high-pass filter and band-pass filter. 

8.3.1. Low-pass filter 

If in the circuit of Figure 8.3 Z1, Z3, Z4 are resistors (Z = R), and Z2 , Z5 are capacitors (Z = 1/sC), 

we obtain a low-pass filter (figure 8.4) with transfer function : 

 T(s) =- R4 / R1

s2R3R4C2C5 + sC5(R3+R4 + R3R4 / R1)+1
= − Gω0

2

s2 + 2sζω0 +ω0
2  [8.4] 

where G = R4 / R1, ω0 =1/ R3R4C2C5   and ζ = ω0 C5 (R3 + R4 + R3R4 / R1) / 2  is named damping 

factor. 

 
Figure 8.3 
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Figure 8.4 

In this low-pass filter the frequency dependence  of amplitude and phase are : 

A(ω) = G ω0
2

(ω0
2 −ω2 )2 + (2ζωω0 )

2
  , ϕ(ω) = arctg − 2ζωω0

ω2 −ω0
2  . 

8.3.2. The high-pass filter 

If in the circuit of Figure 8.3, Z1, Z3, Z4 are capacitors (Z = 1/sC) and Z2 , Z5 are resistors (Z = R), 

we obtain a low-pass filter (figure 8.5) with transfer function : 

 T(s) = − s2 C1/C4

1/ (C3C4R2R5)+ s(1/ C3+1/C4 +C1 / C3C4 ) / R5 +1
= − s2 G

s2 + 2sζω0 +ω0
2 , [8.5] 

where G = C1 / C4, ω0 =1/ R2R5 C3C4 ,  and   ζ = (1/C3 + 1/C4 + C1/C3C4) / (2R5 ω0). 

A(ω) = G ω2

(ω0
2 −ω2 )2 + (2ζωω0 )

2
= , ϕ(ω) = arctg 2ζωω0

ω2 −ω0
2 . 

 
Figure 8.5 

8.3.3. The band-pass filter 

If in the circuit of Figure 8.3, Z1, Z2, Z5 are resistors and Z3 , Z4 are capacitors, we obtain a band-

pass filter (figure 8.6) with transfer function : 

 T(s) = − s2 / (R1C4 )
1/ (C3C4 R*R5)+ s / (C*R5)+s2 = − s Gω0 / Q

s2 + sω0 / Q +ω0
2  [8.6] 

where C* = (C3C4)/(C3 + C4) and R* = R1 || R2, ω0 =1/ R*R5 C3C4 , Q = ω0C*R5 is the quality 
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factor34, and G = (R5C*)/(R1C4) is the gain. 

 
Figure 8.6 

The amplitude is A(!) =| T(s) |= G / 1+Q2(! /!0 "!0 /!)
2 , and the phase shift, which change sign at  

% = %0, is 0(%) = arctan[–Q(%/%0–%0/%)]. 

8.4. Quality factor and damping factor 

The meaning of the damping factor 1 is explained 

by the graphs of Figure 8.7 where the amplitude  

A(%) = |T(s)| (normalized to G) is plotted vs. 

frequency (normalized to the frequency %0) for 

various values of 1 (for high-pass and low-pass).  

For small 1 values the filter response is peaked 

near the frequency %0. The peak frequency %p 

may be obtained by zeroing the first derivative of 

A(%) :  !p = !0 1" 2#
2  for the low-pass, and 

!p = !0 / 1" 2#
2  for the high-pass. This shows 

that a peak appears only for ! <1/ 2 " 0.7 .  

The peak-amplitude is A(!p ) = G / 2" 1# 2"2( ) .   

The peak disappears in the Butterworth type filter 

where  ! =1/ 2 . At the cut-frequency %0, we get 

A(%0) = G/21; in the Butterworth filter therefore A(%0) = G/ 2 . 

The band-pass filter is better described by the parameter Q = (21)21.  

———— 
34 For the quality-factor see also: http://en.wikipedia.org/wiki/Q_factor 
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Figure 8.8 gives the band-pass response for 

different Q values as a function of %/%0.  

Note that the transfer function is symmetric with 

respect to %0 if the abscissa is traced in log-scale. 

In the band-pass filter %0, takes the name of 

central frequency, and we find that A(%0) = G. 

The larger is Q, the narrower is the peak in the 

band-pass response: the quality factor Q is defined 

as Q=%0 /(%2–%1), where %1 and %2 are the 

frequencies at which A(%1,2) = A(%0)/ 2 .  

In fact the equation A(!) = G / 1+Q2(! /!0 "!0 /!)
2 , letting A(%1,2) = A(%0)/ 2 , becomes  

1+(%0 / %1,2 – %1,2 / %0)2Q2 = 2, with the solutions !1 = !0 1+ 4Q2 "1( ) / 2Q    and   

!1 = !0 1+ 4Q2 +1( ) / 2Q .  

The difference %2 – %1 = (% defines the  band-width, i.e. the frequency interval where the 

amplitude is within –3 dB with respect to the peak value A(%0): 20 log10 (1/ 2 ) " –3 . 

Comparing filters of first  and second order we see 

that (in the region % >> %0 for the low-pass and in 

the region % << %0 for the high-pass) A1lp(%) " 

G(%0 / %),  A2lp(%) " G(%02 / %2), and A1hp(%) " 

G(% / %0),  A2hp(%) " G(%2 / %02),   respectively. 

The order number measures the steepness of the 

slope of A(%). 

In the Bode plot (figure 8.9), where the amplitude 

is given in dB (20 log10 A), in a log-log plot, the 

slope of a first-order low-pass filter (for % >> %0) 

is–20 dB/decade while the slope of a second-order 

low-pass filter is -40 dB/decade. For high-pass 

filters the slope is (for % << %0) +20 dB/decade and 

+40 dB/decade, respectively. 

 

 
Figure 8.8 

 

 
                        Figure 8.9 
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8.5. Filters VCVS  

A second important group of active filters of 

second order is the VCVS (Voltage Controlled 

Voltage Source)35 . 

These filters are made by one OA ad a passive 

network with impedances  Zi (R and C) in the 

general layout of Figure 8.10.  

The transfer function may be easily obtained 

by imposing current conservation at the nodes A (I1 = I2 + I3) and B (I2 = I4), and noting that the 

voltage is the same at node B and C.  

Moreover, the basic non-inverting amplifier gives Vo = GVB.  

Equation I1 = I2 + I3 at node A gives: 

Vi !VA
Z1

= VA !Vo
Z3

+ VA !VB
Z2

  , 

and relation I2 = I4 at node B gives: 
VA !VB
Z2

= ! VB
Z4

  , 

Letting VB = Vo/G, and solving for VA  yields VA = (Vo/G)(1+Z2/Z4), that, inserted into the first 

equation gives: 

Vi
Zi

= ! V0
G

1+ Z2
Z4

"
#$

%
&'
1
Z1

+ 1
Z2

+ 1
Z3

"
#$

%
&'
! G
Z3

! 1
Z2

(

)
*

+

,
-   . 

The transfer function T(s)= Vo/ Vi therefore is: 

T(s) = ! G
1+ (Z1/Z2 ) / (Z3 / Z4 )+ (Z1+Z2 ) / Z4 + (1!G)(Z1 / Z3)

. [8.7]

The particular choice G = 1, transforms the non-inverting amplifier into a buffer and the general 

layout becomes the simpler one, also named Sallen-Key filter36, shown in Figure 8.11: 

 
Figure 8.11 

———— 
35 The name VCVS has historical reason, is is normally used to distinguish this layout, which also has multiple 

feedback, from the previous one: the difference is that now feedback is both positive and negative. 
36  Sallen, R. P.; E. L. Key (1955-03). "A Practical Method of Designing RC Active Filters". IRE Transactions on 

Circuit Theory 2 (1): 74–85. 

 
Figure 8.10 
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Which involves only 4 impedances, and the general transfer function becomes: 

 T(s) = −1
1+ (Z1/Z2 ) / (Z3 / Z4 )+ (Z1+Z2 ) / Z4

 [8.8] 

8.5.1. The low-pass VCVS  

If in the circuit of Figure 8.11 Z1 , Z2 are resistors and Z3 , Z4 are capacitors we get a low-pass 

filter (figure 8.12), with : 

 T(s) = 1
1+ s(R1 + R2 )C4 +s2 (R1R2 C3C4 )

= ω0
2

s2 + s2ζω0 +ω0
2 . [8.9] 

 
Figure 8.12 

The transfer function is similar to that of the multiple feedback low-pass filter of [8.4], but with 

cut frequency ω0 =1/ R1R2 C3C4 , and damping factor ζ = 12 C4 / C3 R1 / R2 + R2 / R1( ) .  

We may change ω0, at constant ζ, scaling the resistors by the same factor, or change ζ, at 

constant ω0, changing the capacitors while keeping constant their product. 

8.5.2. High-pass VCVS  

If in the circuit of Figure 8.11 Z1 , Z2 are capacitors and Z3 , Z4 are resistors we get a high-pass 

filter (figure 8.13), with : 

 T(s) = − s2 (R3R4 C1C2 )
1+ sR3(C1+C2 )+s2 (R3R4 C1C2 )

= − s2

s2 + s2ζω0 +ω0
2 , [8.10] 

The transfer function is similar to that of the multiple feedback low-pass filter of [8.5], but with 

cut frequency ω0 =1/ C1C2 R3R4 , and damping factor ζ = 12 R3 / R4 C1 / C2 + C2 / C1( ) .  

We may change ω0, at constant ζ, scaling the capacitors by the same factor, or change ζ, at 

constant ω0, changing the resistors while keeping constant their product. 

  

Vi
Vo

R1 R2
C4

C3 –
+

Vi
Vo

C1 C2 R4

R3 –
+
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Figure 8.13 

If we let G> in the circuit of figure 8.10 the transfer function is simply multiplied by G, and the 

damping factor ζ becomes  respectively:  

ζ = 1
2 C4 / C3 R1 / R2 + R2 / R1 + (1−G) (R1C3) / (R2C4 )( )  

for the  low-pass, 

ζ = 1
2 R3 / R4 C1 / C2 + C2 / C1 + (1−G) (R3C2 ) / (R4C1)( )  

for the high-pass. 

8.6. The state-variable filters 

The state-variable active filters are made of two cascaded inverting integrators plus a summer that 

adds the outputs of the two integrators (figure 8.14). 

 
Figure 8.14 

To explain the working principle of this kind of filters we start with an example. 

In Figure 8.15 we first neglect OA4, which does not affect the behavior of the circuit..  

We calculate the voltage V1  considering that OA1 acts as inverting amplifier for the source V3 , 

and as non-inverting amplifier with gain 2 for sources Vi  and V2 ; using the superposition 

principle we get : 

V1 = 2 [ViR2/(R1+R2) +V2R1/(R1+R2)] –V3. 

 
Figure 8.15 

The same result may be obtained by applying the conservation of current at nodes A (Ii = I2) and 

B (I1 + I3 = 0), and noting that  VA = VB. 

Because Oa2 and OA3 are inverting integrators we get V2 = –V1/sRC and V3 = –V2/sRC ; by 

Vin V3

V2

V1

–   k1V1 dt –   k2V2 dtΣ
−β3V3
+βVin
+β2V2
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inserting these into the previous equation we obtain: 

V1 (1+2R1/sRC(R1+R2)+1/(sRC)2) = Vi2R2/(R1+R2). 

The transfer function at the first output V1 is: 

 
2
00

2
1

2

2
211

2
212

2

i

1
1 2ss

Gs
)CR(/1+RC)R+R/(R2ss

)R+R/(R2s 
=

V
V

= (s)T
ω+ζω+

=
+

− , [8.11] 

where ωo = 1/RC, ζ = R1/(R1+R2)  and G1 = 2R2/(R1+R2) 

The transfer functions for the other two outputs V2 and V3 are therefore: 

 
2
00

2
02

2
00

2
01

i

01

i

2
2 Q/ss

Q/Gs
2ss
Gs 

sV
V

-=
V
V

= (s)T
ω+ω+

ω
=

ω+ζω+

ω−
=

ω  [8.12] 

where Q = 1/2ζ = (R1+R2)/2R1  and G2 = QG1 = R2/R1, and 

 
  

� 

T3(s) =
V3
Vi

=
V1ω0

2

Vi s
2

=
G 1ω 0

2

s2 + s2ζω0 +ω0
2

. [8.13]  

Comparing [8.11], [8.12], [8.12], with [8.4], [8.5], [8.6], we see immediately that at V1, V2,V3 

we have  a high-pass, a band-pass and a low-pass. 

Considering now also OA4 (an inverting summer for V1and V3) we obtain at the fourth output  :  

V4 = –(V1+V3), with the transfer function : 

 
2
00

2

2
0

2
1

i

4
4 Q/ss

)s(G 
=

V
V

= (s)T
ω+ω+

ω+− . [8.14]  

Relation [8.14] describe the behavior of a band-reject (or notch) filter: for s2 >> ω02 or s2 << ω02 

the amplitude A(s)→ G, while for ω = ω0, A(s)=0.  

The band-width is Δω = ω0 / Q = 2R1/RC(R1+R2), the same as that of the band-pass filter. 

Note that the state-variable filters are devices that may be used as analogic computers to solve 

differential equations.  

For example in Figure 8.14, because V3 = −k2 V2∫ dt , we have V2 = –(1/k2) ∂V3/∂t, and also 

 V1 = –(1/k1)∂V2/∂t = (1/k1k2)∂2V3/∂t.  

Letting V3 = y(t), 1/k1k2 = a, –β2/k2 = b, β3 = c and –βVi = d, the function y(t) satisfies the 

differential equation  a∂2y/∂t + b∂y/∂t + cy + d = 0.  

This result is general: for any linear differential equation we may find a circuit, made of 

integrators and summers, which gives the solving function..  
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8.7. A simple notch filter  

A notch filter may also be made of a single AO, as shown in Figure 8.16. 

This circuit may be seen as a modification of that 

shown in figure 8.3, by letting Z2 = % and by 

feeding a fraction G of the input signal to the non-

inverting input.  

Note that in this circuit the values of capacitors and 

resistors are not arbitrary! In fact we must set  

Z4 = Z3 =1/sC and G = R2/(R2+2R1) . 

The transfer function may be calculated by 

imposing the current conservation at nodes A: (Vi–VA)/R1 = (VA–Vo)sC + (VA–VB)sC, and at 

node B: (VA–VB) sC = (VB–Vo) / R2,, and by noting that  VB = VC = ViR2 / (R2+2R1). 

 
2
00

2

2
0

2

2
212

2

2
21

2

Q/ss
)s(G

=
CRR/1+CR/s2s

)CRR/1sG(
= T(s)

!+!+

!+

+

+  [8.15] 

Here CRR/1 210 =! , 122
1 R/RQ = , G = R2/(R2+2R1) < 1, and the band-width is 

(% = %0 / Q = 2/R2C.  

8.8. The impedance converter (NIC) 

The circuit of Figure 8.17, converts the impedance Z 

into the impedance Z* = –(R1/R2)Z (a negative 

impedance).  

By definition, the input impedance is Z*= Vi/Ii, and the 

input current may be written Ii = (Vi–VC)/R1.  On the 

other hand the output voltage VC may be calculated as:  

VC = !AVB +AVA = !AVi +AVC Z / (R2 +Z)"# $%  

where A is the open-loop gain, which gives: 

VC = !Vi /
1
A
! Z
R2 + Z

"
#$

%
&'
( Vi 1+

R2

Z
"
#$

%
&'  

Putting all together we get Z* = Vi/Ii = Vi R1/(Vi–VC) = –ZR1/R2.  

 
Figure 8.17 

R1

R2
A
B

Vi

Z

Ii

Z*

–
+ C

 
Figure 8.16 
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8.8.1 A band-pass  NIC filter 

We may obtain a band-pass filter using a NIC 

circuit as shown in Figure 8.18 The ideal OA 

model gives VC=VA, and the Ohm’s Law 

gives IA = (VA–VB)/R1 and IB = (VB–VC)/R2.  

Therefore IB =  –IAR1/R2 =  –G*IB , where 

G* = R1/R2 may be seen as the current gain of 

the NIC of Figure 8.17. Moreover Vo = ZbIB  

(with Zb = Rb || 1/sCb) and Vi –VA = ZaIA (with 

Za = Ra+1/sCa) and Vo = VC .  

By solving the system of all the above equations we obtain the transfer function Vo/Vi: 

 T(s) = !sG* /(RaCb )
s2 + s(1/ RaCa +1/ RbCb !G* / RaCb )+1/ RaRbCaCb

= !sG"0 / Q
s2 + s"0 / Q +"0

2  [8.16] 

By comparing  [8.16] with [8.6], we see that this is a band-pass filter, with central frequency 

baba0 CCRR/1=! , gain G = G*/(Ca/Cb+Ra/Rb–G*). 

The Q-factor Q =1/ RbCb / RaCa + RaCa / RbCb !G
* RbCa / RaCb( )  may be adjusted by simply 

changing the ratio G* of the resistors R1 , R2. The G* value, however is not arbitrary: we must 

avoid excessive G values. E.g. for Ra = Rb = R  and  Ca = Cb = C, we get G = G*/(2–G*) and  

Q = 1/(2–G*).  Both Q-3 and G-3 for G*-2, so that the filter stop working for G* values too 

close to 2, because the OA saturates. 

An equivalent method to derive T(s), is to use the result  obtained in § 8.8.  

Then T(s)=Vo/Vi= Z*/(Zi+Z*) = G*Zb/(Za+G*Zb), that gives again [8.16]. 

8.9. Gyrator 

The gyrator 37 is a circuit that converts an impedance into its reciprocal, scaled by a factor K: 

Z* = K/Z. If Z is a capacitor (Z = 1/sC), the effective impedance seen from the gyrator input  is 

Z* = sKC, equivalent to the inductance L* = KC. An example is the circuit of Figure 8.19. 

By definition the input impedance is Zi = Vi/Ii . The negative feedback gives :VA = VB = Vi and 

the Ohm’s Law gives: Ii = (Vi – V2) / R1, so we only need to calculate V2.  

———— 
37 The name explains that it rotates the vector associated to the complex impedance (changing a capacitor into an 

inductance the Z-vector rotates by 180o.  

 
Figure 8.18 
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At the node A : (V1–VA) / R3 = (VA–V2) / R2, that solved for V2 gives:   

V2 = (1+R2/R3)Vi – R2 / R3V1. 

 At the node B : VB = V1R5 / (R5+Z4), that solved for V1 gives  V1 = Vi(1+Z4/R5).  

Therefore Zi = R1R3R5 / (R2Z4) = sR1R3R5C / R2 =  L*, where L* = R1R3R5C / R2 (the effective 

inductance) is the capacitance multiplied by R1R3R5 / R2.  

This circuit is equivalent to an 

inductance whose value may be made 

quite large, useful for obtaining low-

pass LC filters with very low cut 

frequency38.  E.g. with 1 k$ resistors, 

we get L* /C= 1 henry / #F. 

There are also commercial IC (integrated 

circuits), like the National AF120, that 

make easy setting-up the gyrator (Figure 

8.20).  

Circuits 8.19 and 8.20 differ only for the 

position of C, which in 8.20 is exchanged 

with R2. The previous analysis gives 

Zi = Z1Z3Z5 / (Z2Z4), with Z2= 1/sC. Integrated in AF120 there are Z3 = Z2 = Z5 = R = 7.5 k$, so 

that letting Z1 = Ro  we obtain Zi = sRRoC = sL*, with L* /RoC= 7.5 (henry / ms).  

8.10. Capacitance multiplier 

The circuit shown in Figure 8.21 behaves as a 

capacitance multiplier. 

To calculate the input impedance Zi = Vi / Ii we 

must evaluate the input current Ii = (Vi–V2) / ZC.  

Because OA1 is a follower we have V1 = Vi, and 

because OA2 is an inverting amplifier with gain 

G = –Ro / Ri, we get V2 = GV1.   

———— 
38 See the examples of LC filters in Appendix B. 

 
Figure 8.21 

 
Figure 8.19 

 
Figure 8.20 
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As a conclusion: Ii = Vi(1+Ro/Ri)sC, and Zi = 1/sC*, where the effective capacitance is 

C* = C(1+Ro/Ri). This circuit may be used, with a capacitor R in series to the input, as an RC* 

low-pass filter, with the output taken at the node between R and C*. 

Another capacity multiplier is shown in Figure 

8.22, where the OA is used as follower, so that 

V1 = V2.  

The voltage  V1  is calculated from the divider 

(R1 , ZC ) : V1 = ViZC / (R1+ZC) = Vi /(1+sR1C).  

The input impedance Zi = Vi / Ii is calculated 

considering that Ii = I1 + I2,  that gives  

Ii = (Vi–V2)/R1+(Vi–V2)/R2 = (Vi – V2) / Rp,  where Rp = R1||R2. Eliminating V2 we obtain 

Zi = Rp(1+1/sR1C) = Rp+1/sC*, where C* is the effective capacity C* = C(1+R1/R2). 

8.11. IC active filters 

The state-variable filters may be easily obtained using commercially available as IC . A typical 

example is the National AF100, (or the similar Intersil FLTU2), whose internal structure is shown 

in Figure 8.23. 

 
Figure 8.23 

A possible configuration of AF100 is shown in Figure 8.24, where, ignoring the fourth OA of  

figure 8.23 , we obtain the same circuit of figure 8.15.  

 
Figure 8.24 

 

 
Figure 8.22 
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The current conservation at node A gives: (VA–Vi) / Ri = (V3–VA) / R100+(V1–VA) / R10,  

and at node B: (V2–VA) / R100 = VA / RQ.  

From integrator OA1 we get: V2 = –V1/sRF1C = –ω1V1/s and from integrator OA2 : 

V3 = V2 /sRF2C = ω1ω2V1 / s2, where ω1 = 1/RF1C and  ω2 = 1/RF2C. Therefore: 

 VA = – (RQ || R100)ω1V1 / s. 
Eliminating Vaand V3 in the first equation we get the transfer function for V1 (high-pass): 

100102110010i100100Q101
2

i10
2

1 R/R)]RRR(R/[)RR(Rss
R/Rs

)s(T
ωω+ω+

−
= . 

The cut frequency (with C=1nF, R10 =10 kΩ ,R100 =100 kΩ) is: 

ω0 = ω1ω2 /10 =10
9 1/ (10 RF1RF2)  , 

e.g. for RF1 =10 kΩ,    RF2=1 kΩ,   ω0 =100kHz; the damping factor ζ is : 

ζ = 1
2
10RF2
RF1

1.1+104 / Ri
1+105 / RQ

 

e.g. for Ri =10 kΩ,    RQ=1kΩ, ζ ≈ 0.5 %; and the gain is G1=R10 / Ri.  

In the band-pass we get G2 =Q R10 / Ri( ) 10RF1 / RF2 , with a quality factor   

� 

Q = 1/(2ζ) ,  in the 

low-pass the gain is G3 = R100 / Ri.  

Note that gain and quality factors may be varied at constant ω0 by properly adjusting  RQ and Ri . 

With AF100 we need only four resistors to get a triple filter. With three more resistors (and using 

the fourth AO of AF100) we may build the notch filter of figure 8.15, as shown in figure 8.25. 

 
Figure 8.25 
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9. Switching circuits 

 
When the OA has no negative feedback, or it has a large positive feedback,  a small noise voltage 

at the input (e.g. offset, line pick-up, switch-on transients...) brings the output to saturation. The 

OA works out of the linear region and its response to input voltage may take only two values: Vcc+  

or Vcc! .39 

This behavior allows us to use the OA as a switching circuit, i.e. as a comparator.  Not all the 

commercial OA may be used for this purpose: many models suffer of latch-up, i.e. they get 

blocked with output saturated, and to unlatch them we must switch-off the power supply. 

Therefore, when designing a switching circuit we must select special OA with rail-to-rail output, 

that do not suffer latch-up, named Schmitt triggers or Comparators. Some comparator are 

available with open-collector 40, a configuration that allows to select for saturation voltage (Vo) 

values different from the power supply voltages.  

9.1. Comparator 

Let us first analyze an OA without negative feedback. We immediately see that it works as a 

threshold detector. In fact if we fix one of the inputs at a reference voltage VR, the output 

switches between ±Vcc as soon as the voltage applied to the other input crosses the threshold 

voltage VR. For example, let VR > 0, the 

output voltage Vo , as a function of the 

input voltage Vi , is shown in Figure 9.1. 

Within the small range (V = 2Vcc/Ao 

around VR the comparator has linear 

response, but (V is of the order of 

millivolt, so that a small noise around 

VR makes the output unstable: the 

comparator  oscillates between +Vcc and 

–Vcc. 

  

———— 
39 Here we assume for simplicity  V+ 

cc = – V-
cc, and |VoMax|"Vcc. 

40 See Figure 12.8 of chapt. 12 for open-collector layout. 
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9.2. Comparator with hysteresis 

The comparator instability around VR may be avoided, by introducing an hysteresis through a 

positive feedback. In this case the response, within a small range around VR, will depend on the 

values previously assumed by the input Vi.  The single threshold value will be replaced by two 

threshold values: a lower one, that will switch the output for increasing input voltages, and a 

higher one , that will switch the output for decreasing input voltages. 

Therefore small oscillations of the input voltage Vi nearby each threshold value will not toggle 

the output more than once . The larger is (V, named hysteresis width, the smaller is the 

comparator sensitivity.  

Let us analyze the inverting 

comparator with VR > 0: 

The non-inverting input voltage is set 

by the superposition of two sources: 

the output voltage Vo and the 

reference voltage VR, as well as by the 

divider  (R1,R2), i.e. by the feedback 

fraction. # = R1/(R1+R2).  

The threshold voltages are ±#Vcc+ (1–#)VR. The hysteresis width 2#Vcc replaces the linear 

region. The mean value of 

threshold voltages (1–#)VR well 

approximates VR for #<< 1.

The  non-inverting comparator 

with hysteresis (Figure 9.3) is 

similar with the difference that 

the input impedance, Zin = R1|| 

R2 is here lower than Zin2. 

This comparator toggles when #Vo+(1–#)Vin = VR i.e. for Vin = (VR±#Vcc)/(1–#)=VR±R1/R2Vcc . 

For # << 1 the threshold becomes Vin " VR ± #Vcc i.e.  the hysteresis width is 2#Vcc/(1-#) " 2#Vcc.  

In the particular case VR =0, the toggling condition is Vin = ±R1/R2Vcc. 
 

 
Figure 9.2 

 
Figure 9.3 



60   

 

9.3. Bipolar astable multivibrator  

If we replace the input signal of an inverting comparator by a complex (RC) negative feedback, 

we obtain an astable monovibrator, a type of relaxation oscillator 41.  

We first consider the case of bipolar power supply ( –Vcc < Vo < +Vcc), and we let VR = 0, shown 

in the circuit of Figure 9.4. 

 
Figure 9.4 

The negative feedback forces the voltage V1 at the inverting input to follow the output voltage 

Vo, with the delay produced by the low-pass filter RC.  

Because VR = 0, the threshold values are ± βVo , and the time evolution of  V1 and Vo are shown 

in the figure 9.4. Let the switch be initially closed, forcing V1 = –Vcc, Vo = +Vcc and  V2 = +βVcc. 

The capacitor is initially charged, and a current i = 2Vcc/R starts discharging it through the 

resistor R when the switch is opened. When the voltage V1 reaches V2 = +βVcc the comparator 

output switches to Vo = –Vcc changing the threshold voltage into the new value V2 = –βVcc : we 

assume this instant as t = 0.  

At this time V1(t) becomes the exponential function decaying with time constant RC, and 

boundary conditions : V1(0) = +βVcc and V1(∞) = –Vcc; therefore we may write: 

V1(t) = (βVcc +Vcc)exp{–t/RC} –Vcc. 

When V1(t) reaches the threshold V2 = –βVcc, again the comparator switches to Vo = +Vcc: we 

name this time t = τ. The new exponential law becomes: 

V1(τ) = –βVcc = (βVcc +Vcc)exp{–τ/RC} –Vcc , 

from which we get τ = RC ln{(1+β)/(1–β)} = RC ln{1+2R1/R2}. 

For  β << 1, (i.e. R1 << R2)  we have τ ≈ 2RCR1/R2.  
———— 
41  See for example http://en.wikipedia.org/wiki/Relaxation_oscillator 
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At the time t=τ the comparator switches again, the voltage V1(t)  increases again towards +Vcc 

and the threshold  is again V2 = +βVcc. It is easy to see that the next switch of the output voltage 

occurs after the time τ’=τ: the output signal Vo(t) is therefore a square-wave with period T=2τ, or 

frequency f = 1/T=1/2τ. For β << 1 we get f ≈ R2 / 4RCR1, i.e. a frequency linearly increasing with 

R2, or a period linearly increasing with R, C, R1. 

The square-wave symmetry (i.e. τ' = τ) is due to the power supply symmetry (V+cc = V–cc) and to 

the choice  VR = 0. In case of non-symmetrical power supply we may add a double zener in 

parallel to the output load and a resistor Ro, as shown in Figure 9.5.  

When the OA output V'o reaches V+cc or V–cc, the oscillator output Vo is forced to ±Vz.  

The voltage drop zcc VV −+  or −− ccz VV  across 

the resistor Ro removes  the effect of non-

symmetric power supply. 

If we need a pulser with τ' ≠ τ  we may replace 

the negative feedback resistor R by a parallel of 

two resistors in series with opposite diodes, 

(see insert in Figure 9.5).  

 

9.4. Unipolar astable multivibrator 

If only unipolar power supply is available (V+cc , 0), 

or if we need positive output pulses we may use the 

circuit of Figure 9.6. 

In the general case (R1 ≠ R2 ≠ R3) the voltage V2 

takes the threshold voltages V2
+  e V2

−   for output Vo =Vcc or Vo =0 : 
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In the simpler case R1 = R2 = R3 = R we get V2
+ = 2

3 Vcc  e  V2
− = 1

3 Vcc . 

 

Figure 9.5 
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With close switched: V1 = 0 and Vo = Vcc. When the switch is opened, the capacitor starts to be 

charged through R and the voltage V1 grows, crossing the threshold V2
+  at the time that we 

assume to be t  = 0. The comparator toggles forcing V0 = 0 and V2 = V2
− .  

The time evolution for V1 becomes V1(t) = V2
+ exp (–t/RC). The next comparator toggle occurs at 

t = τ1 , when V1 reaches the lower threshold −
2V : exp(–τ1/RC) = −

2V / +
2V = R3 / (R1+R3), that 

gives: 

τ1 = RC ln (1 + R1/R3). 

At this time (we again set as t=0) Vo = Vcc, and the voltage V1, starting from V2
−  , grows toward 

Vcc and the next comparator toggling occurs at t = τ2 
. The time evolution is now  V1(t) = ( −

2V –

Vcc) exp(-t/RC) + Vcc, that gives for the positive pulse width τ2: 

τ2 
 =  RC ln[( −

2V – Vcc)/( 
+
2V – Vcc)] = RC ln(1+R2/R3).  

For  R1 = R2 we get a square-wave (τ2 
 = τ1). 

The same circuit, with power supply (0, –Vcc ) gives negative pulses.
 



  63 

 

10. Self-oscillation 

 
Self-oscillation in OA is a spontaneous oscillation of the output voltage in the absence of input 

signal: it may occur when there is a positive feedback.  

Positive feedback may be provided by a fraction of the output signal fed to the non-inverting OA 

input, but also a fraction of the output signal fed to the inverting OA input, if there is a phase shift 

of π. 

Such positive feedback may also be non-intentional: it may be the result of capacitive coupling 

between output and input or it may be due to a ground-loop42 in the power supply circuitry; in 

these cases the oscillation is undesired, not controlled  and it produces instability of the signals. 

If we properly adjust the positive feedback, however, we may obtain stable and controllable 

oscillation:  

10.1. General remarks 

Let us consider a loop made by an amplifier with gain 

A and a total feedback fraction β.  

Suppose we inject a signal into any point of the 

closed-loop: we’ll find that signal amplified of the 

factor Aβ   after one loop-turn.  Both the gain and the 

feedback fraction are generally complex function of 

frequency: Aβ   = A(s) β (s), with s=jω. 

Therefore also the loop-gain Aβ   is a transfer function of the frequency: Aβ=a(s)+jb(s) where a 

is the real part  and b is the imaginary part; and also we may write Aβ = a + jb = a2 + b2e jφ  

with φ= arctan(b/a). So that when the imaginary part b=0  the phase shift φ  of Aβ   is zero and 

the amplitude gain |Aβ|= a =real part of Aβ. 

For |A(ω)β(ω)|≥1, and φ(ω) =0, any noise inside the loop will trigger a signal at frequency ω that 

will increase with time. If |A(ω0)β(ω0)|=1, and φ(ω0 ) =0,  the signal at frequency ω0 stabilizes and 

this  phenomenon is named self-oscillation. 

Self-oscillation, therefore, is not possible for any frequency: two equations must be satisfied: : 

Im[A(ω0)β(ω0)]=  0, which means zero phase shift,  and Re[A(ω0) β(ω0)] =  1, which means that 

the amplitude loop-gain equals one. In fact for Re{Aβ}<1 the oscillation dies-out, and if 

———— 
42  See for example http://en.wikipedia.org/wiki/Ground_loop_%28electricity%29 
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Re{Aβ}>1 the OA goes to saturation, the signal becomes distorted and the circuit analysis 

become more complex. 

10.2. Wien-bridge sinusoidal oscillator 

A simple example of sinusoidal oscillator, named Wien-bridge 

oscillator, is shown in Figure 10.2.  

Within the ideal OA model, gain is A = 1+Ro/R1: it is a real 

number, i.e. it does not depend on ω.  

The feedback β fraction, instead, is a complex function of ω (the 

low-pass filter transfer function). 

From relation β = (ZC3 || R3) / (ZC3 || R3 + R2 + ZC2) we get  

β(jω) = jωR3C2

(jω/ω0 )2 + jω/ω0Q +1
 , with 

)CCRR/(1 32320 =ω  and Q=1/[ω0(R3C2+R2C2+R3C3)].  

The condition Im [Aβ] = 0, with A real, becomes Im [β] = 0, an equation that is easily solved 

noting that the solution is obtained by imposing zero real part in the denominator of β (because 

the numerator is imaginary), and, noting that  (jω/ω0)2 = –(ω/ω0)2, finally we obtain the solution: 

ω = ω0.  For ω = ω0 the feedback fraction becomes: 

 ( )23320230 C/CR/R+11/= QCR = )( +ωωβ  . [10.1] 

The oscillation become stable for |Aβ|=1, i.e. when 233210 C/CR/R= /RR + .  

The simple case is for R2 = R3 = R, C3 = C2 = C, corresponding to β = 1/3 and Q = 1/3, imposes 

A = 3, i.e. , Ro = 2R1 so that the oscillation frequency is fo = 1/(2πRC) .  

Another simple choice is  R3 = 2R2 and C2 = 2C3 (i.e.  β = 1/2, Q = 1/4) imposes A = 2, i.e. Ro = R1.  

We are free in setting the values in the feedback network, provided that we satisfy the conditions 

[10.1] and |Aβ| = 1. At high frequencies we must account for the frequency dependence of the 

open-loop gain Aol(ω), which decreases with ω.  

A similar circuit may be obtained by replacing the capacitors in Figure 10.2 with inductances. We 

would get 1/β = 1+R2/R3+L2/L3+j(ωL2/R3–L2/R3ω), (ω0)2 = (R2R3/L2L3);  for R = R2 = R3,  L= L2 

= L3 the oscillation frequency would be f o= R/2πL. 

The closed-loop gain value is critical: it must be exactly Aβ| = 1. Therefore a stable oscillator 

normally requires an automatic gain stabilization (note that the amplitude of the voltage 

oscillation does not enter explicitly into the equations we used above). 

  
Figure 10.2 
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This may be achieved using non-linear passive elements in the feedback network, as in the 

circuits of Figure 10.3. 

 
Figure 10.3 

In both cases we exploit the temperature dependence of a non-linear resistor R(T): because the 

power W=V2/R dissipated on R(T) increases with the voltage amplitude, also the temperature 

increases. In the case a) of PTC (Positive Temperature Coefficient) thermistor (it might be simply 

a filament lamp) the result is ∂R/∂V>0, so that the loop-gain A=1+Ro/R(V) decreases.   

In the case b) with NTC (Negative Temperature Coefficient) thermistor we have ∂R/∂V<0, and 

the gain is A=1+R(V)/R1. 

Assuming for example β = 1/3 must be A = 3: therefore , at room temperature we should choose 

for the PTC : Ro = 2RPTC  and for the NTC : R1 = RNTC / 2. 

Another Wien-bridge oscillator circuit is shown in 

Figure 10.4. Here the automatic gain control is 

provided by the non-linear behavior of the diodes 

placed in parallel to Rf. At higher oscillation 

voltages the diodes start conducting, thus decreasing 

the effective feedback resistance, and the closed-

loop gain (that is initially set to A=3  by adjusting 

the potentiometer R). 

10.3. Phase shifter 

A phase shifter is an all-pass filter, that does not affects the signal amplitude |T(jω)| = 1, while 

introducing a phase shift that does depend on frequency. 

Two examples are shown in Figure 10.5. 

 
Figure 10.4 
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Figure 10.5 

The circuit a) produces a negative phase offset and the circuit b) a positive phase offset: note that 

the two circuits differ only for the position of R 

and C. We analyze both , redrawing the circuit in 

the general layout of Figure 10.6. Voltage Vout is 

the superposition of the source Vin amplified –1 

(inverting) and of the source Z2/(Z1+Z2)Vin 

amplified +2 (non- inverting).   

The transfer function is :  

T(jω) = Z2Z1
Z1 + Z2

−1= ±1− jωRC
1+ jωRC

 =  ±e–j2φ, 

with the sign – in case a) and sign + in case b). The phase shift is 2φ = 2arctan(ωRC). At the cut 

frequency ω0 = 1/RC the phase shift is ±π/2, i.e. the output signal  is in quadrature with respect to 

the input signal. The phase offset in case a) decreases with ω from +π  to zero and increases in 

case b) from  zero to  –π. 

10.4. Double shifter oscillator  

In Figure 10.7 OA1 is an inverting amplifier: |A(jω)| = 1.  The other two OA may be seen as the 

feedback network made by two phase cascaded shifters. 

 
Figure 10.7 

–
+

C

Ro

Vin
Vout

Ro

R

–
+
C

Ro

Vin
Vout

Ro

R
a) b)

–
+ 1

–
+ 2

–
+ 3

V2V1
C2'

R1'

R

RR

R

C2
R1

R'o

Ro

V3

 
Figure 10.6 

–
+

Z1

Ro
Vin

Vout

Ro

Z2



  67 

 

With proper choice of the CR dividers the two shifters may be set for a total phase offset of π at 

some frequency ω0 producing self-oscillation. 

The particular choice R1' = R1, and C2' = C2, gives for V2 a quadrature output, ad for V3 an output 

in phase opposition with respect to V1. The automatic gain control may be achieved by a double 

diode in parallel to Ro'. 

10.5. Quadrature shifter 

A phase shifter that provides a constant phase 

shift of π/2 for any frequency is shown in 

Figure 10.8. 

The voltage V1 = VinZc/(Zc+R2) is amplified 

with gain G=1 + Zc / R1, so that the transfer 

function is:  

T(s) = 
22

11

11 CsR1
CsR1

CsR
1

+
+ , 

that, for R1C1 = R2C2 = RC, becomes T(s) = 1/(sRC). This circuit is a non-inverting integrator 

giving an output shifted by φ = π / 2 with respect to the input.  For a constant input amplitude, the 

output decreases linearly with frequency: |T(jω)| = 1/(ωRC).  

10.6. Double integrator oscillator 

Adding to the previous circuit (OA2) an 

inverting integrator (OA1) as in Figure 

10.9, we obtain a quadrature oscillator. 

The circuit may be seen as figure 10.1, 

where each one of the two AO may be 

either the amplifier (A) or the feedback 

network (β). 

Letting R' = R and C' = C, we get  

Aβ = 1/(ω2R1C1RC), which gives an oscillation frequency RCCR/1 110 =ω . Note that the two 

outputs VF and VQ are in quadrature. 

The automatic gain control may be achieved placing a double diode in parallel to C1 and the 

amplitude may be adjusted by the potentiometer R’ . 

 

 
Figure 10.8 
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10.7. Phase shifter oscillator 

Figure 10.10 shows the oscillator known as 

phase shifter oscillator. It is made an active 

differentiator 43 Vo = A(s)V1= –sRoC V1  

whose negative feedback V1 = β(s)Vo is a 

double high-pass filter made by two passive 

differentiators (we neglect here the diodes and 

Rf that set the automatic gain control).  

The transfer function β(s) is the product of the two transfer functions T1(s)=V2/Vo and 

T2(s)=V1/V2. Because V1 is the output of the divider (C',Z2), (where Z2 is the parallel of 44 R' and 

C") we get T2(s)= sR'C' / [1 + sR'(C' + C")]. Choosing C = C' = C" and R = R', we have more simply 

T2(s)= sRC / (1 + 2sRC).  

Because V1 is the output of the divider (C, Z1), (where Z1 is the parallel of R with C' in series to 

Z2) we obtain T1 = sRC(1+2sRC)/(1+4sRC+3s2R2C2). 

The condition |Aβ| =|A(s)T1(s)T2(s)|=1 may be written: 1+4sRC+3s2R2C2 = –s2R2RoC3 or  

Ro = [4ωRC–j(1–3/ω2R2C2)]/ω3R2C3; the left side of the last equation is a real number: 

therefore the imaginary of the right side part must be zero:  i.e.  ω2R2C2=1/3. 

This transforms the condition |Aβ|=1 into Ro = 12R , and oscillation frequency ω0 = 1/(RC 3 ). 

One should choose Ro slightly larger than12 R to start oscillation: the two diodes shown in Figure 

10.10, and proper trimming of the OA feedback resistance will adjust the oscillation amplitude . 

  

———— 
43 See § 8.2. 
44 Note that non-inverting input is a virtual ground. 

 
Figure 10.10 
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10.8. Square/triangular wave generator  

One comparator and one integrator in a closed-loop as in Figure 10.11 give a generator of 

triangular wave and of square wave. 

 
Figure 10.11 

 

The OA1 comparator toggles when the voltage Vx crosses the zero-voltage threshold value set as 

reference at the inverting input, and the OA2 integrator transforms the constant VQ output into a 

ramp. Let us follow the time evolution of the voltages VQ and VT, starting from VQ = +Vcc: 

the output VT of the inverting integrator decreases linearly with time: VT(t) = VT(0)– Vcct/RC. 

The voltage Vx is the superposition of sources VT and VQ: Vx = VTR2/(R1+R2)+VQR1/(R1+R2), 

and the comparator toggles when Vx = 0, i.e. for VT = –VQR1/R2, (note that we must set R2 > R1to 

avoid saturation of VT).  This gives the starting value VT(0) for the positive ramp of VT(t) 

(because now VQ = –Vcc): VT(t) = –VccR1/R2+ Vcct/RC. The next comparator toggling occurs for 

VT(T/2) =VccR1/R2, at the time t=T/2 (the half-period of the square-wave):  

VccR1/R2= –VccR1/R2+ VccT/2RC , or 2R1/R2= T/2RC, that gives T = 4RC(R1/R2).  

The triangular wave amplitude is 2VccR1 / R2, with frequency f = 1/T = (R2/R1)/4RC. 

The circuit of Figure 10.11 has two drawback: the OA1 input offset voltage Vos1 gives an offset 

to the triangular signal, and  the OA2 input offset voltage Vos2 makes not symmetrical the square-

wave.  

An improved version of this circuit is shown in Figure 10.12, where offset adjustment, amplitude 

stabilization and symmetry control have been included. The frequency is set by the potentiometer 

RF, the amplitude by the potentiometer RG. The potentiometer RT corrects the VT offset and RQ 

the square-wave symmetry . Frequency increases by decreasing RF and the amplitude VT 

increases by decreasing RG.  



70   

 

 
Figure 10.12 

Letting K = (R2+RG)/(R1+R2+RG) the peak-to-peak amplitude of the triangular wave is  

VTpp = 2Vz(1/K–1), with mean value V1/K, where V1 is set by adjusting the potentiometer RT.  

The frequency is f = [1 – (V2 / Vz)2] / 4 [(1 /K – 1) (R + RF) C], where V1 is set by adjusting the 

potentiometer RQ, so that, for V1 = V2 = 0 and RG = RF = 0 we get  f = (R2 / R1) / 4RC, as above. 

An equivalent circuit is drawn in Figure 10.13 with an inverting comparator (OA1), with 

hysteresis and reference voltage VR = VQR2/(R1+R2), plus a non-inverting integrator (OA2). 

 
Figure 10.13 

The superposition principle gives Vx=VxQ+VxT with: VxQ=VQ(R || Zc)/(R + R || Zc), and  

VxT =VTR/ (R + R || Zc), i.e. : VxQ=VQsRC/(2+sRC)  and VxT =VT(1+sRC)/(2+sRC)   

The integrator OA2 amplifies the voltage Vx with gain G=2, so we obtain  

VT=2(VxT + VxQ)=2[VT(1+sRC)+ VQsRC] / (2 + sRC), that gives the transfer function of AO2: 

VT/VQ = 2/sRC, predicting the time evolution of VT : VT(t) = VT(0) + (2/RC) ∫ dtVQ . 

Let us assume t=0 when the comparator switches from –Vcc to +Vcc: at this time the threshold 

voltage is −
RV  = –VccR2 / (R1 + R2) = VT(0). The voltage VT start increasing linearly with the law: 

VT(t) = Vcc[2 t / RC – R2 / (R1 + R2)].  

The next comparator toggling occurs after an half-period T/2, when VT(t) reaches the positive 

threshold: +
RV = +VccR2 / (R1 + R2) =VT(T/2).   

The period is therefore T = 2RCR2 / (R1 + R2), or T = RC for R1 = R2. 
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10.9. Quadrature square/triangular wave generator 

By cascading two stages of the previous circuit (comparator+ integrator), as in Figure 10.14, we 

get two square-waves in quadrature and two triangular-waves in quadrature.  

 The signal VQ2 has T/4 delay 

with respect to VQ1, and VT2 

delays T/4 with respect to VT1 .  

For T1=R1C1 & T2=R2C2, the 

amplitude of the two triangular 

waves is different and the 

square-wave is no more 

symmetric; e.g. for T2 > T1 we 

have VT1 > VT2. 

10.10. Voltage to frequency converter 

Frequency may be modulated by a voltage 

using a voltage-to-frequency converter as that 

shown in Figure 10.15. Here the output signal 

V3 is made of pulses repeating at the frequency 

f, proportional to the input voltage Vi. 

The circuit is made by an inverting integrator 

(OA1) and by a non-inverting comparator 

(OA2) with hysteresis and zero reference 

voltage VR (see § 9.2). 

Let be t = 0 the time at which V3 switches from –Vcc to +Vcc. Because VR=0,  it toggles when its 

input voltage V2(t) reaches the positive threshold Vcc(R1 / R2); the diode is reverse biased (V4 is a 

virtual ground), and OA1 integrates the current IC = I+ = Vi / R, that gives at the output : 

 V1(t) = V1(0) – t (Vi / R)/C = Vcc(R1 / R2) –  t (Vi / R)/C [10.2] 

The comparator output switches back to –Vcc after the time T1, when V1(t) reaches the negative  

threshold V1(T1) =–VccR1/R2.  

The equation [10.2] becomes: –VccR1/R2= Vcc(R1 / R2) – T1 (Vi / R)/C , that yields the solution 

 T1 = 2VccRC (R1/R2) /Vi.  

Let now be t = 0 the time at which V3 switches from +Vcc to –Vcc .  

 
Figure 10.15 

 
Figure 10.14 
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We have V1(0) = –VccR1/R2 and because the diode is forward biased OA1 integrates the current  

IC = I+– I– = Vi/R – Vcc/R3, giving at the output V1(t) = –Vcc(R1 / R2) – t (Vi / R–Vcc/R3)/C  

If we choose R>> R3  we may neglect I+ = Vi/R, writing: 

   V1(t) ≈ –Vcc(R1 / R2) + t (Vcc/R3)/C  [10.3] 

The comparator input V1(t)  will cross again the positive threshold Vcc(R1 / R2) at the time T2 . 

The equation [10.3] becomes: VccR1/R2≈–Vcc(R1 / R2)–T2 (Vcc / R)/C , that yields  

T2 ≈ 2R3CR1/R2 << T1.  

The signal period is T= T1+T2 ≈ T1, and the frequency f = 1/T ≈ ViR2/(2VccRCR1), which is 

proportional to Vi. A better approximation which takes into account IC = I+– I– gives:   

f  ≈  k1(Vi/Vcc) + k2(Vi/Vcc)2, with k1 = 2R2/(2RCR1) and k2/k1 = R3/R << 1. 

10.11. Frequency-to-voltage converter 

The inverse process, i.e. the frequency-to-voltage conversion, may be implemented by the circuit 

shown in figure 10.16, a basic frequency meter for generic a.c. signals with zero mean value 

Vi
*(t). 

 
Figure 10.16 

In figure 10.16a the OA1 is a zero-reference comparator, with a twin zener load, that transforms 

the input signal Vi
*(t) into a squared signal Vi(t) of constant amplitude 2Vz peak to peak.    

At each rising edge of the squared input signal Vi(t) a charge q =2VzC is transferred from the 

capacitor C through the diode D1 into the capacitor C1 and the same charge is restored into C 

through the diode D2 at each falling edge of Vi(t), because D1will be reverse-biased.  

This charge transfer corresponds to an average current <i> = q/T = CVi f, where T=1/f  is the 

average period of the signal Vi(t) with average frequency f.  

The capacitor C1 discharges through the resistor R, during the time between falling and rising 

edge, but if  RC1 >> T, the output voltage Vo is well approximated by: Vo = –RCVi f. To have a 

frequency meter with positive output we simply revere the polarity of both D1 and D2 diodes. 



  73 

 

11. Phase sensitive detector (lock-in) 

 
The lock-in amplifier is a device that is frequently used to extract weak signals from background 

noise. Noise sources may be electromagnetic fields due to line power supply or radio-frequency 

broadcasting, but also acoustical pick-up, thermal noise, shot noise or flicker noise45. 

The line-noise, due to poor shielding or to ground-loops, has Fourier-components at the line-

frequency (50Hz or 60 Hz, and multiples). The thermal noise (also named Johnson noise), 

depends on the source resistance R , on temperature and on the band-width B: its root-mean-

square voltage amplitude at room temperature is VRMS= 4RKBTB  ≈10–4 )V(RB µ . The shot 

noise, due to the quantum nature of electric charge, depends on the current I and on the band-

width B; its root-mean-square current amplitude is IRMS=  

� 

2q I B  ≈10–4 )A(IB µ . The  flicker 

noise (also named 1/f noise) decreases with frequency  so that it is practically negligible above 

few tenths of Hz. 

We may filter the noise by using narrow band-pass filters tuned at the signal frequency ωo. The 

higher is the filter quality factor Q = ωo/(ω2–ω1) the more selective is the filter; however the 

maximum value for Q≈100 is limited by instability problems: a slight drift of the central filter 

frequency (due to temperature changes or aging of components) produces in fact strong signal 

damping.     

An alternative solution is to lock the filter central frequency to the signal frequency: this is the 

lock-in amplifier technique. A lock-in amplifier needs a reference signal VR that is synchronous 

with the signal to be detected VS; such signal may be found more easily than it could appear at 

first sight: quite often in fact the weak signal to be extracted from background noise is produced 

as response to an excitation signal that will be available as reference signal. In case of d.c. signals 

one may always modulate46 them by "chopping" . 

The lock-in output is not sinusoidal signal (as for tuned band-pass filters output) but a d.c. voltage 

whose value is proportional to the amplitude of the detected input signal. 

The main advantage of the lock-in is the very high Q-values (of the order of 105) even at very low 

frequencies, where traditional tuned band-pass filters become very expensive .  

———— 
45 For a nice brief description of electric noise see: Electronics for the Physicist, C.G.Delaney, chapt 11. We here 

only recall that thermal noise is due to the brownian motion of electrons, shot noise is due to the statistical 
fluctuations of the number of discrete charges flowing in a time unit, while flicker noise may be produced  by 
various different processes. 

46 Choppers are frequently used for example in optical benches where the d.c. light beam crosses a rotating disk 
with holes, that acts as a on/off switcher at a given frequency: a photodetector sensing part of the beam emerging  
from the perforated disk provides the reference signal.  
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11.1. Lock-in with synchronous switch   

Let us consider a sinusoidal signal VS(t)=VSMsin(ωot) with angular frequency ωo, and amplitude 

VSM, which is buried in a background noise VN with a broad frequency spectrum. The noisy signal 

may be seen as the superposition VS+VN of the signal VS and the noise VN.  

 
Figure 11.1 

Figure 11.1 shows the basic drawing of a lock-in made of a synchronous switch and a low-pass 

filter: the signal to be processed VS+VN is chopped by a voltage-controlled switch D and fed to a 

low-pass RC filter.  The switch is controlled by the reference signal VR synchronous  with VS, so 

that it is passing the signal during the positive half-wave of VS and it shorts to ground the filter 

input during  the negative half-wave of VS.  This is substantially an half-wave chopper. 

 
Figure 11.2 

The signal shape VS +VN (before the switch) and V1 (after the switch) is sketched in figure 11.2a, 

where is shown also the waveform of VS, that in real case is hidden by the noise. After the low-

pass filter the mean value is <V1> = VSM/π  because the mean value of  VN is zero, if we make the 

reasonable assumption that the noise has no component synchronous with VS.  

If we set a phase lag between VR and VS, i.e. the switch is triggered with a delay t1, (or a phase 

shift Φ=ωot1) with respect to VS, the output voltage <V1> depends, not only on VSM, but also on 

Φ. An example is shown in figure 11.2b, and an analytic expression of the output is :  

< V1 > = 1T VSM sinω0t dtt1

t1+T/2

∫ = VSM
T( ) −cosω0t

ω0

⎡
⎣⎢

⎤
⎦⎥t1

t1+T/2

= VSM
π( )cosφ  [11.1] 
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Relation [11.1] shows that the lock-in output, at constant VSM,  measures 4, which explains the 

name of "phase sensitive detector" for the lock-in amplifier. 

 

11.2. Lock-in with multiplier   

A different lock-in structure is shown in figure 

11.3. Here the block marked by  / , replacing 

the synchronous switch of figure 11.1, is a 

multiplier, i.e. a device that gives an output 

voltage V1(t) proportional to the product of the 

input voltages VS(t) and VR(t): V1(t)= k VS(t)/ VR(t).  

Frequently, in the commercial IC multipliers, the value of the factor  k is 1/10, but here we'll 

assume  k = 1, for simplicity. 

When VS(t) and VR(t) are sinusoidal functions: VS(t)=VSMsin%St  and VR(t)=VRMsin%Rt , we get:  

 V1 (t) = VSMVRM sin%St  sin%Rt  = VSMVRM[cos(%S–%R)t – cos(%S+%R)t]/2 [11.2] 

where we used the Werner trigonometric formulas to compute the sin%St  sin%Rt  product. 

The output signal V1 , has two components , with frequencies that are the sum and the difference, 

respectively, of the two frequencies of input signals. 

In the particular case %S=%R=%o, with a phase shift 4 between input signals, we get: 

V1 (t) = VSMVRM[cos4 – cos(2%ot+4)]/2.  

Here the output has a d.c. component ("zero-frequency term") that depends on the phase shift, and 

a component that is the second harmonic of the signal frequency%o. 

At the low-pass output (under the condition RC>>1/2%o) we get  

 <V1> = (VSMVRM/2) cos4. [11.3] 

Relation [11.3] gives the same dependence on 4 as relation [11.1], but here the lock-in output 

depends also on the amplitude VRM of the reference signal. A reliable measurement of the 

detected signal amplitude therefore requires not only a stable phase shift but also a stable 

amplitude for the reference signal. 

The transfer function of this lock-in has the spectrum shown 

in figure 11.4. The bandwidth (% of the band-pass filter, 

centered at %o,  is determined by the time constant  RC of the 

low-pass filter. 

 
Figure 11.4 

 
Figure 11.3 
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This means that the noise components with frequencies %i , with |%i–%o|<1/RC, modulate the 

output voltage <V1. One might see these components with frequencies very close to %o, as quasi-

synchronous components equivalent to a synchronous signal with phase shift slowly changing 

with time. 

We may analyze again the circuit of figure 11.1 assuming the switch to be a multiplier with a 

reference signal that assumes values 0 and 1 (a square-wave with mean value <VR>=1/2). 

A generic periodic signal, with period T=2&/%R may be written in terms of Fourier components : 

 V(t) = a0 + an
n=1

!

" sin(n#Rt +$n )  , [11.4] 

where a0 is the mean value and an are the Fourier amplitudes. 

In our case a0=1/2, the even amplitudes are zero and the odd amplitudes are an=2/&n. Therefore 

VR  may be written: 

 VR(t) =
1
2 +

2
! sin"Rt + 1

3 sin3"Rt + 1
5 sin5"Rt + ...[ ]  , [11.5] 

and the output signal V1(t= VS(t) • VR(t) becomes: 

 V1(t) =
1
2 VSM sin!St +

2
" VSM[sin!St sin!Rt + sin!St sin3!Rt / 3+ ...] . [11.6] 

If the reference signal VR is synchronous with VS, i.e. %R=%S=%o, in relation [11.6] survives a 

single d.c. term, and for , RC>>1/%o we obtain at the filter output for <V1> again relation [11.1]. 

We note that if the noise VN includes a d.c. term VOS, i.e.  VN + VS = VOS + VN (t) + VSMsin%ot, then 

the offset will appear also at the lock-in output :  

 < V1 >= 1
2 VOS + 1

! VSM cos" . [11.7] 

Relation [11.6] shows that all the odd harmonics (2n–1)%o of VS contribute to V1(t), so that the 

transfer function of this lock-in has the spectrum shown in figure 11.5.  

The bandwidth (% of the peaks centered at 0, %o, 3%o, 5%o,… is determined by the time constant  

RC of the low-pass filter : (% =2/RC. This means that the noise components with frequencies %i , 

with |%i–(2n–1)%o|<1/RC, modulate the 

output voltage <V1. 

The lock-in with (0,1) multiplier may be 

seen as a parallel of infinite numbers of 

lock-ins with sinusoidal multiplier and 

with reference signals made by odd 

harmonics of the signal to be detected. Figure 11.5  
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The (0,1) square wave reference method introduces more noise band-pass windows with respect 

to the sinusoidal reference method.  However it is easier to stabilize the amplitude of a square 

wave than the amplitude of a sinusoid.  

The value of the time constant RC is limited only by the required response time ' (' " 5 RC) , so 

that choosing RC>>1/%o we may obtain very high  Q  values ( %o/(%=2RC%o up to 105). 

11.3. Lock-in with multiplier ±1 

Using as reference signal a symmetric 

square wave (e.g.±1) we may get a further 

improvement. 

Figure 11.6 shows a modification of 

figure 11.1, where two amplifiers 

followed by a voltage controller switch 

behave as a multiplier by ± 1. 

The analysis of the behavior of this circuit 

is the same as that made for circuit of 

figure 11.1, with the difference that in the 

Fourier series [11.4] we have now ao=0 

and an =4/&n, so that the mean value of the 

product V1(t) = VS(t) VR(t) becomes (even 

in presence of an offset VOS in the input signal): 

 < V1 >= 2
! VSM cos"  . [11.8] 

The transfer function of this circuit has the spectrum depicted in figure 11.7, where the peak at 

zero frequency disappears, allowing much better rejection of offset and flicker noise from VS. 

In Figure 11.6 the voltage-controlled 

switch may be implemented by a 

relay, or a pair of FET or CMOS 

Analog Switches 47. 

A simpler version of circuit 11.6 is 

shown in Figure 11.8, where a single 

OA (see § 4.5) plus a voltage-

controlled switch implements the required multiplier (±1 square wave).  

———— 
47 A brief description of Field Effect Transistors (FET) is given in Appendix A.7; for Analog Switches see §13.3. 

 
Figure 11.6 

 
Figure 11.7 
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When the switch is ON the OA is an inverter (G = –1), when the switch is OFF the OA is a 

follower (G = +1). The accuracy of this circuit is limited by the non-ideal characteristics of 

electronic switches (RON ≠0 and ROFF≠∞ ): in case of CMOS the value of RON  is of the order of 

fractions of kΩ and for ROFF several MΩ.  Therefore the resistor R1 must be selected in order to 

satisfy  the conditions RON << R1 << ROFF. 

 
Figure 11.8 

Considering Figure 4.7 and Figure 11.8,  the gain becomes (accounting for the finite values of 

RON  and ROFF): G
– = [2RON / (R1 + RON) – 1]≈ – 1 or  G+

 = [2ROFF/(R1+ROFF) – 1]≈ +1.  

To improve the approximations we may use two analog switches, as shown in Figure 11.9.   

 
Figure 11.9 

Here the two switches are driven in phase-opposition by the two comparators (one inverting and 

one non-inverting) with reference voltage at ground. 

The single channel chopper shown in figure 11.9 may be replaced by a twin-channel chopper 

followed by a differential (low-pass) amplifier as in the circuit shown in Figure 11.10.  

Here the quad analog switch is driven in phase opposition by the two comparators so that the 

input signal VS is alternately fed to the differential amplifiers inputs every half-period. This 

configuration is particularly useful when the source signal VS is floating (not referred to ground 

voltage) : in this case two wires will feed the differential signal (V+
S–V–

S) to the analog switch 

inputs. 

R

C

Ro Ro
R1 –

+

VS

RV

V0
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Figure 11.10 

Another configuration is shown in Figure 11.11, which is essentially a full-wave chopper that 

duplicates the circuit of Figure 11.1, with a differential amplifier that reads the voltage difference 

at the outputs of the two RC filters. 

 
Figure 11.11 

The two resistors named R may be replaced by a single resistor (R) if RONC >> τs, where τs is the 

switching time of the two analog switches (to avoid discharging the capacitors during the fraction 

of τs when the two capacitors are shorted by 2RON).  

11.4. Synchronous filter 

Another circuit that may efficiently increase the signal-to-noise ratio is the synchronous filter 

shown in Figure 11.12. This circuit differs substantially from a lock-in: it gives an output that is a 

square wave synchronous with the signal VS to be detected, and with an amplitude proportional 

to the VS amplitude. 

 
Figure 11.12 

If ω0  is the angular frequency of the Vs, the time constant RC of the two low-pass filters must 
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satisfy the relation RC >> 1/ω0 , while time constant R0C0 of the high-pass filter, feeding the output 

non-inverting amplifier (and deleting eventual offset), must satisfy the relation (1/R0C0) << ω0 . 

The output square wave Vo(ω0 ) has a peak-to-peak amplitude equal to 2|VS|.  

This circuit is often used as a chopping preamplifier in sophisticated lock-in circuits 
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12. Digital electronics: elementary notions 

 

This chapter offers a fast outline of the basic elements that may be found in digital circuits: only a 

small fraction of the large number of IC devices commercially available will be analyzed. 

This brief digest should however be sufficient to give at least an idea of the working principles of 

most of IC digital devices and to provoke some curiosity into the reader who might deepen his 

knowledge elsewhere 48. 

12.1. Logic circuits 

Digital logic circuits are those circuits where only two stable states are possible in any point of 

the network: e.g. a transistor which is ON (saturated) or OFF (not conducting) or a diode forward 

or reverse biased,...  

Normally we consider voltages, not currents, and we define a state as "high" ("H" or "TRUE", or 

“1”) when the voltage level is above some high threshold value, and we define it as "low" (“L” or 

"FALSE", or “0”) when it is below some low threshold value. 

In the logic circuits made with bipolar transistors (TTL =Transistor-Transistor-Logic) 49 that are 

powered at +5 V high threshold value is about +2.0 V and the low threshold value is about +0.8 

V. In the logic circuits made with CMOS FET (Complementary-Metal-Oxide-Semiconductor 

Field-Effect-Transistor) the threshold voltages depend on the low VSS and high VDD bias 

voltages. Normally VSS= 0 V, and VDD may be any value between +5 V and +15 V: generally we 

choose VDD = +5 V or +12 V.  

We must distinguish the input threshold values from output stable values: a margin must be 

provided to warrant proper working in presence of noise, temperature changes, manufacturer’s 

tolerance... This means that the minimum output voltage in the H state of any device must always 

be higher that the high threshold input value for any device; and the maximum output voltage in 

the L state of any device must always be lower than the low threshold input value for any device.   

A diagram with the limit values for the input/output threshold voltages in TTL and CMOS 

circuits with VDD = 12 V, is shown in Figure 12.1 

———— 
48 More detailed discussions may be found in Microelectronics, by J. Millman and A. Grabel, or in in TTL 

Cookbook or in CMOS Cookbook, by D. Lancaster, or in Digital Electronics by W.G. Young. 
49  Se for more details http://en.wikipedia.org/wiki/Logic_gate 
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Figure 12.1 

When the voltage at input has a value within the range marked with a question-mark the device 

may detect the input signal either as "high" or "low", so that the state of its output is random.  

Any complex digital circuit may be split into basic blocks named logic gates. The basic gates are 

of three kinds : NOT (inverter), AND and OR; the corresponding graphic symbols and behavior 

(truth tables) are shown in Figure 12.2. 

  
Figure 12.2 

The matrices in the lower part of Figure 12.2 are named truth tables and they define the behavior 

of each gate, i.e. the relation between the output logic value X and the given values of inputs A 

and B. For example: if the output X is the result of  "A AND B" (also written as "X = A•B"), this 

means that X is "high" only when both A and B are "high" at the same time.; if X = A OR B (also 

written as "X = A+B", this means that X is "high" when A is "high" or when B is "high".   

 
Figure 12.3 

A bar placed over a logic variable symbol means its logical negation , e.g. if A is "high" , then  

A  (=A negate) is "low". In the graphic symbols the negation is marked by a small circle at the 

gate output, which indicates an added NOT gate. For example adding a NOT to the OR output we 

A X A
B X B
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X
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get a NOR gate, and adding a NOT gate to a AND gate we get a NAND gate, whose truth tables 

are shown in Figure 12.3.  

Using the truth tables we see that a NAND gate may be made by two inverters added at the OR 

inputs, and a NOR by two inverters added at the AND inputs. These equivalences, shown in 

Figure 12.4, are the De Morgan theorems. 

  
Figure 12.4 

Another gate frequently used is the EXCLUSIVE OR, defined by relation A⊕B = A •B+A•B  

and by the truth table in Figure 12.5; it is made either of 2 NOT + AND + OR, or of AND +2 

NOR, or NAND + AND + OR: 

 
Figure 12.5 

A NAND gate with the two inputs shorted, or one input "high" is a NOT gate un inverter. Using 

two NANDs we may get one AND, with three NANDs we may get one OR, with four NANDs 

we may get one NOR and with six NANDs we may get one EXCLUSIVE-OR, as shown in 

Figure 12.6. 
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Figure 12.6 

This proves that any logic circuit may be made by NAND gates only. Figure 12.7 shows that any 

circuit may also be made of NOR gates. 

  
Figure 12.7 

The analysis of logic circuits may be made easier 50 using the identities shown in table 12.1. 

 
Table 12.1 

Two typical internal structures of a NOT (TLL inverter) are shown in figure 12.8 

 
Figure 12.8 

———— 
50 A compact but complete collection of rules for Boolean algebra may be found in http://www.asic-

world.com/digital/boolean1.html#Symbolic_Logic 

X

X = A NOT

NORX = A   B

AND
OR

EXCLUSIVE OR

A

B

A

A

X

X
XB

A A

B

+V

X
X

A

B

X = A   B
X = A   B

X = A + B

A

B

X = A NOT

NAND

OR

A

A

X

X

X
B
A A

B
X

X = A + B

X = A + B AND

X = A + B

X



  85 

 

In Figure12.8a is drawn the standard Totem-pole configuration that switches the output between 

V+ and ground, and in Figure12.8b the open collector configuration, that requires a pull-up 

resistor. The first configuration does not allow connecting more gate-outputs together, while the 

second one allows to use many inverters with common output (which makes a NOR with many 

inputs). The drawback is that the pull-up resistor reduces the device speed.  

Floating TTL inputs go "high"; the TTL inputs shorted to ground inject a current of about 1.6 

mA, and shorted to +V drain a negligible current (≈0.04 mA). The power available at one TTL 

output can drive up to 10 gates (we say it has a fan-out of 10), with a maximum current to ground 

of about 0.4 mA, and a maximum current drained from +5 V of about 16 mA (with output "low"). 

The main families51 of  TTL gates are 74xx and 54xx where xx stays for the number that specify 

the device. The family 54xx extends the 74xx working temperature range from (0 oC ÷ +70 oC) to  

(–55 oC ÷ +125 oC).  

A label (L, H, S, LS, F, AS) between 74 / 54 and the number xx, distinguishes sub-families that 

differ for speed and power: Low-power (L), which traded switching speed (33ns) for a reduction 

in power consumption (1 mW) . High-speed (H), with faster switching than standard TTL (6ns) 

but significantly higher power dissipation (22 mW). Schottky (S), operated more quickly (3ns) 

but had higher power dissipation (19 mW) Low-power Schottky (LS) good combination of speed 

(9.5ns) and low power consumption (2 mW.  Fast (F) and Advanced-Schottky (AS) speed up the 

low-to-high transition.  

The families CMOS (74HCxx high speed, 74HCTxx high speed TTL compatible) offer a current 

output of about 20 mA. CMOS gate inputs do not drain current; input not used should be shorted 

to ground or to V+ to avoid possible damage due to static electricity charge. CMOS gate inputs do 

not drain current; input not used should be shorted to ground or to V+ to avoid possible damage 

due to static electricity charge.  
 

name type t (ns) Vcc (V) power (mW) 

74xx TTL-Normal  10  5 10  
74Hxx TTL-High Speed 6 5 22 
74Lxx TTL-Low Power 33 5 1 
74Sxx TTL-Schottky 3 5 19 
74LSxx TTL-Low Power Schottky 10 5 2 
74HCTxx CMOS (TTL input) 10 2-6 .001 
74HCxx CMOS (TTL pin compatible) 10 2-6 .001 
40xx CMOS 100 3-18 <.001 
 

———— 
51 An outline of different logic families (RTL, DTL, ECL, TTL, IIL, CMOS, HC, ...) may be found in 

http://en.wikipedia.org/wiki/Q_factor 
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A short list of TTL and CMOS logic gates is given in Appendix  D 52 . 

12.2. Bistable circuits: the flip-flop 

A flip-flop or latch is a circuit that has two stable states and can be used to store state 

information53. Two inverters in a closed loop as in Figure 12.9 make a bistable multivibrator, also 

named RS flip-flop, where the acronym RS stays for SET-RESET. 

 
Figure 12.9 

The outputs Q and Q  are stable states that toggle when the corresponding input is grounded by 

the SET switch or the RESET switch. By grounding SET we get Q = “1”, and by grounding 

RESET we get Q = “0”.  

This circuit has memory, i.e. it toggles when R (or S) is shorted, only if previously S (or R) was 

shorted. The resistors in Figure 12.9 are needed to protect the inverters in case both switches are 

shorted to ground, which gives Q = Q= “1”. 

Another RS flip-flop circuit is shown in Figure 12.10, in two different configurations, made with 

two NAND or two NOR, respectively. 

 
Figure 12.10 

Toggling may be triggered by a pulse (negative in the first case and positive in the second case). 

When the pulse is applied through a coupling capacitor (as in figure 12.10) it is named edge 

triggering instead of level triggering. With edge triggering the pulse duration has no effect (e.g. a 
———— 
52  See http://en.wikipedia.org/wiki/List_of_7400_series_integrated_circuits, and 

http://en.wikipedia.org/wiki/4000_series 
53  See also http://en.wikipedia.org/wiki/Flip-flop_%28electronics%29 
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SET
SET RESETRESET

Q QQ
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RESET pulse may be effective even if the SET pulse is not terminated. 

The question mark in the third column in truth table defines disallowed state (or forbidden state: 

both outputs in the same state: Q=Q ). In fact (from Figure 12.2) the NAND output is 1 when any 

input is 0, and the NOR output is 0 when any input is 1. The symbol Q in the third column in 

truth table defines a stable state (either 0 or 1).  

12.3. Synchronous flip-flop  

The basic synchronous flip-flop is drawn in Figure 12.11a. The name synchronous means that the 

SET (or RESET) command is executed when the CLOCK goes high.  

 
Figure 12.11 

With CLOCK enabled the two NAND gates driven by S and R behave as inverters, with CLOCK 

disabled the output of these NAND gates is “1”. The other NAND gates are connected as in 

Figure 12.10. The disallowed state is for S = R =  “1”, that gives Q = Q= “1”.  

A modification of this circuit, shown in Figure 12.11b, where an inverter connects R to S  is the 

type-D Flip-Flop, where D means "data" or "delay" because, the input D value is transferred to 

the outputs Q , with a delay.  

The synchronous latch of Figure 12.11a allows multiple toggling during a single CLOCK pulse. 

A configuration that avoids multiple toggling is the master-slave flip-flop shown in Figure 12.12. 

Here two identical synchronous latches in series are triggered by the CLOCK pulse: an inverter 

provides  the needed counter phase trigger for the two latches.  

 
Figure 12.12 

The first flip-flop (master) acquires the logic values set by R and S during the CLOCK "high" 

pulse, and its state is transferred to the second flip-flop (slave) when the CLOCK goes low. If 



88   

 

more than one SET/RESET signal is fed during the clock "high" pulse, only the last state of the 

input logic values controls the outputs when the clock goes down. The disallowed state is again 

for R = S = “1”, that gives  “1” to both outputs of the master latch.  

If R and S ports are connected by an inverter, as in Figure 12.13, we obtain again a type D flip-

flop.  

 
Figure 12.13 

The truth table of this circuit is easily obtained from that of the master-slave flip-flop with the 

condition D = S = R . The type-D flip-flop transfers the logic value of the input D to the output Q 

when the clock goes low; it is therefore a negative-edge triggered device. Similar circuit obtained 

by replacing the NAND gates with NOR gates is positive-edge triggered. 

If the output   

� 

Q  is shorted to the input D, as in Figure 12.14a, we get a divider by two (also named 

Type-T flip-flop): the input is the CLOCK port and the outputs toggle at each input pulse; the 

output is always a square wave, for a constant frequency clock. The same device is obtained from 

an RS Flip-Flop by feeding back the   

� 

Q  to S and the Q to R, as in figure 12.14b. 

 
Figure 12.14 

Many (n) cascaded dividers by two make a divider by 2n. Note that the output is always a square 

wave.  

Adding two AND gates to a synchronous latch, as  in Figure 12.15, we obtain a J-K flip-flop.  

 
Figure 12.15 

If J or K are “1” the AND gates transmit to S and R the logical values of Q  and Q; if they are “0” 
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they gates transmit to S and R the logical value “0”. Therefore S and R never take the logical 

value “1” at the same time, and the disallowed state is removed.  

A J-K flip-flop becomes a divider-by-two when both J and K are “1”, and it becomes a type-D 

latch if  J and K are connected by an inverter.  

If J and K are shorted we get a type-T flip-flop, (T stays for toggle): when the T-port is “1” the 

output toggles at the CLOCK rising, when the T-port is “0” the toggling is disabled. In Figure 

12.16 an example of the clock, toggle and output Q signals are shown. 

 
Figure 12.16 

In the 74xx family, dual J-K flip-flop: 7473 and 7476, 7474 is a dual D-type flip-flop. 

In the CMOS family: 4013 is a dual D-type, 4027 a dual J-K and 4043 is a quad RS latch type 

NOR, and 4044 is a quad RS latch type NAND (see figure 12.10), 4049 is an hex inverter.  

The 7476 and 7474 gates have PRESET and CLEAR inputs that, when are set to low level, force 

the Q output to high level and to low level, respectively; these inputs are normally kept at high 

level: if both are low the device is in disallowed state The 7473 device has only CLEAR input. 

PRESET and CLEAR are implemented also in 4027. 

12.4. Monostables 

A monostable is a device that gives an output pulse with preset width (one-shot pulse) when a 

suitable signal (trigger) is fed to the input. An example made of two NOR gates is shown in 

Figure 12.17. The trigger is applied to the first gate whose output is fed, through an high-pass 

filter, to the second gate input. 

The trigger pulse is any signal with a fast rising 

edge with amplitude lager that 3V.  

The working principle is the following. The 

output of gate 2 is "0" because its input B2 is 

"1" (due to the bias resistor R). The output of 

gate 1 is "1" because its input B1 is "0" (due to 

the bias resistor R1). When the trigger pulse 

toggles to "0" the gate 1 output, and to "1" the gate 2 output, the capacitor C starts to be charged 

by the resistor R and when the voltage of input B2 reaches the threshold VTH, the gate 2 output 

toggles back to  “0”.  

Q

Q
C
J

K

C

Q

T
C T

Figure 12.17 
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The pulse width is RC ln [V/(V–VTH)], where V is the bias voltage and VTH the threshold voltage. 

The diodes protect the gates inputs from over voltages due to the high-pass filters.  

A similar one-shot circuit, made with NAND 

gates, is shown in Figure 12.18, where we added 

an enabler switch at the A2 input. If A2 is kept 

"high" (one-shot enabled) the output toggles at 

the B2 spike trigger, if A2 is kept "low" (one-shot 

disabled) no toggling occurs. An equivalent 

enabling command may be set, in the previous 

circuit with NOR gates, with a switch pulling A2 to "high" level.  

Using two NAND gates we may build a one-shot as in Figure 12.19. Here the trigger must be a 

"high" pulse that lasts longer than the output 

"low" pulse. The stable state is "0" at input 

and "1" at output.  

The rising edge of the trigger pulse toggles the 

first NAND (inverter), as well as the second 

NAND. The voltage VB(t), fed to the input B 

of the second  NAND through the RC low-pass filter, decays exponentially with the law VB(t) = 

V e–t/RC. The toggling occurs again for VB(T) = VTL, where VTL is the "low" threshold voltage.  

The output pulse width is therefore T = RC ln (V/ VTL). 

The examples of monostable circuit above described give an idea of the working principle of one-

shot devices; however there are commercially available IC that implement monostable (e.g. 

74121, 74122, 74123, 9602, 8853, 4538…) with added useful features, as free choice between 

rising or falling edge triggering, Q and   

� 

Q  output. These devices requires only external RC for 

setting the output pulse width.   

12.5. Astables 

Chapter 9 described several examples of astable 

multivibrators made by comparators plus RC negative 

feedback. Much more compact astable multivibrators can 

be made using logic ports, as shown in Figure 12.20, 

exploiting the delay provided by an RC low-pass filter 

that feeds the output back  into the input. 

The symbol added inside the gates in Figure 12.20 marks 

 
Figure 12.18 

 
Figure 12.19 

 
Figure 12.20 

R RCC
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the gate hysteresis54 due to Schmitt trigger inputs. The Schmitt trigger is simply  a comparator 

with hysteresis 55. 

 
Figure 12.21 

A normal buffer (a non-inverting gate that may be made of two inverters in series), may be 

transformed into a Schmitt trigger by using a resistive divider in a feedback loop, as shown in 

Figure 12.21b, where Ri<R0/2. Let us consider a CMOS buffer biased between VSS = 0 V and 

VDD = 5 V, with threshold equal to VDD /2.  If the output is "low" (V0 ≈ 0 V) the toggling occurs 

when the input voltage Vi reaches the "high" threshold voltage VTH.. Because VT=ViR0/(Ri+R0), 

we get VTH=(1+Ri/R0)VDD /2.  The "low" threshold voltage VTL , for V0=VDD, is obtained by 

calculating VT from superposition of Vi and V0 sources and letting VT = VDD/2 . From the relation 

VT = Vi R0 /(Ri + R0) + V0 Ri /(Ri + R0), we get VTL= (1 – Ri/R0) VDD /2.  The hysteresis width is 

therefore ΔV=VTH–VTL= VDD Ri /R0, that may be adjusted changing Ri or R0.   

 
Figure 12.22 

An astable multivibrator may be obtained from two inverters and an high-pass filter, as in Figure 

12.22. The working principle is the following. The switch is initially closed, so that VC= VB = 0 

and  VA =  V the capacitor is discharged. When the switch is opened, the capacitor starts charging 

through resistor R and the voltage VC rises until it reaches the "high" threshold VTH: at this time 

the output 1 toggles to "0" and output 2 toggles to "V" , so that VC  = VTH + V and VA = 0. The 

current across R changes sign and the capacitor decays with the time constant RC: 

VC (t)= (VTH + V) exp(–t/RC). After the time T1 we the capacitor voltage reaches the "low" 

threshold: VC (t)= VTL. Solving for T1 we get T1= RC ln [(VTH + V)/ VTL]. At this time VA = V and 

VC = VTL – V, the current again changes direction and the capacitor voltage follows the equation 

VC (t)= V +(VTL –2V) exp(–t/RC), reaching the "high" threshold VTH  after the time T2 : where  

———— 
54 For example the hex schmitt trigger inverters (in the TTL family: 7414  and in the CMOS family: 4584) or  the 

quad schmitt trigger NAND (in the TTL family: 74VH132 and in the CMOS family:4093). 
55  See chapt. § 9.2.  
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T2= RC ln [(2V – VTL)/(V – VTH)].   

This circuit offers two output in phase opposition, but the signals are square wave only when the 

threshold voltages are symmetric with respect to the 

bias voltages (e.g. VTL = ΔV, VTH =V–ΔV), which 

holds for CMOS but not for TTL.  A trick for 

adjusting separately the two time constants we may 

use the circuit shown in Figure 12.23, where the time 

constant is R1C when Q="1" and  R2C when Q  ="0". 

A simple multivibrator for high frequency square 

wave (up to several MHz, because the intrinsic delay τ due to the finite speed of signal 

transmission through the gates is of the order of some nanoseconds), is shown in Figure 12.24, 

for 2n+1 inverters, with n ≥ 1. 

 
Figure 12.24 

The first 2n inverters behave like the RC-filter delay in circuit of  Figure 12.20. The square wave 

frequency in this circuit is not exactly predictable: it does depend on temperature and on bias 

voltage. 

12.6. Monostable with delay 

The delay generated by an odd chain of inverters may be used to build a monostable (one-shot) 

circuit as in the two examples shown in Figure 12.25. 

 
Figure 12.25 

The pulse width is T = (2n+1)τ. The stable state of the inputs in both NAND and NOR gates is 

complementary, because of the inverters chain; therefore the stable output is "low" in the NAND 

circuit and "high" in the NOR circuit. When the input voltage Vin changes state (either going 

"high" or going "low") immediately A=B, so that the output voltage Vout changes state. Only after 

the delay T also the input B changes state, thus toggling the output. If T0 is the time interval 

between two transitions in the input voltage (the input pulse width) it must be (To > T).  

  

 
Figure 12.23 
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12.7. Delay generator 

A simple delay generator may be obtained with the circuits shown in Figure 12.26.  

 
Figure 12.26 

In the NAND version the output pulse falling edge is delayed with respect to the rising edge of 

the input pulse of the time interval T = RC ln [V/(V–VTH)] . In the NOR version the output pulse 

rising edge is delayed with respect to the falling edge of the input pulse of the time interval  

T = RC ln (V/VTL). In both cases we must warrant T < Ti, where Ti is the input pulse width. By 

connecting these two circuits in series (with identical RC) the input pulse will be reproduced at 

the output with the delay T. 

CR

Vi Vo
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Vi Vo
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13.  Some special IC 

In this chapter we describe some popular IC that do not belong to the categories illustrated in the 

previous chapters: timers, IC voltage sources, analog switches. 

13.1. The timer: a simplified description 

The IC timer is made essentially by two comparators, one RS flip-flop, two transistors (one 

switch and one inverter). An essential drawing is shown in Figure 13.1, where also an external 

RC filter is connected to the threshold and discharge ports. The shown circuit behaves as 

monostable pulser  

 
Figure  13.1 

In the stable state the trigger port is kept at a voltage higher than 1/3Vcc, the transistor T1 is ON, 

the capacitor C is discharged, and both comparators have "low" output. When the trigger input 

falls below 1/3Vcc, the comparator C2 toggles, and the output pulse has width determined by the 

time constant RC. The pulse width is set by the time required to charge the capacitor C up to the 

voltage  2/3Vcc  through the resistor R. at this time the comparator C1 toggles, and the circuit 

reverts to the initial state.  

The  Flip-Flop Q  output, normally "high", is forced "low" by the comparator C2 (signal S = set), 

and is forced "high" by the comparator C1 (signal R = reset). The transistor T1 is driven by the 
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output Q : it turns OFF when Q  goes "low" (SET), and returns ON when Q  goes "high" 

(RESET), thus discharging the capacitor. 

The output may be forced "low" anytime by setting "low" the reset port that switches ON the 

transistor T2, which in turn switches ON transistor T1. 

13.1.1.  The timer 555 

The most commonly used IC timer is 555 56. Its connection diagram is the one shown in Figure 

13.1, where the value of the three resistors in the voltage divider is 5 kΩ , and the pin-out is 

resumed in Figure 13.2. The bias voltages are normally + Vcc = (5 ÷ 15) V  and – Vcc = 0 V, but 

different values may be used, with a maximum voltage between pins 8 and1 of 16V. For example 

we may use + Vcc = +7 V and – Vcc =–7 V.  

The output voltage (pin 3) in the "high" state is  +Vcc –1.7 V and –Vcc + 0.3 V in the "low" state57.  

The pin 5 (Control Voltage) is connected to the inverting input of comparator C1, and its voltage 

VCV may be forced to a value different from the normal one (VCV =1/3 Vcc)  When not used, this 

pin is frequently connected to –Vcc  through a capacitor to improve the immunity to noise . 

The pin 2 (trigger) toggles C2 when its voltage crosses the value 1/3 Vcc, or the value 1/2 VCV. 

The minimum trigger pulse-width is 1 µs. 

The pin 6 (threshold) is connected to the non-inverting 

input of comparator C1 and it forces toggling of C1 

when its voltage crosses the value 2/3 Vcc, or the value 

1/2VCV.  

The pin 4 (reset) forces the output "low" when its 

voltage falls below the value –Vcc +0.7 V . 

The pin 7 (discharge) is the open collector of a npn 

transistor (T1 switch).  

13.1.2. A monostable pulser made with 555 timer  

We add to the circuit of Figure 13.1 an input capacitor Ci and a voltage divider (R1, R2) as in 

Figure 13.3, and we calculate the width of the output pulse produced by an input negative pulse 

VT  . 

———— 
56 This device, introduced in 1971 by Signetics as NE555, is now made by many companies in the original bipolar 

and also in low-power CMOS types (Exar XR555, Motorola MC1455, National LM555, Raytheon RM555, RCA 
CA555, Texas SN7255). The dual-type (two timers inside the same chip) is named 556. See also 
http://www.kpsec.freeuk.com/555timer.htm 

57 In the CMOS versions the output may reach +Vcc and –Vcc. 
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Let us assume that input falling edge occurs at  

t = 0, so that the capacitor voltage VC(t) starts 

from zero. It rises towards Vcc with 

exponential law: VC(t) = Vcc(1 – exp[-t / RC]). 

The comparator C1 toggles at the time t = T 

when VC(T)= 2/3Vcc, that gives T = RC ln (3) 

for the output pulse width. The divider (R1,R2) 

biases VT so that VT> 1/3Vcc: R2 may be 

removed if the amplitude of the falling edge is 

larger than Vcc.  

For example with R1 = R2 = Ri= 10 kΩ, we get 

VT(0) = 1/2Vcc, and a time constant RiCi / 2 for the input high-pass filter. With a falling edge 

amplitude equal to 1/3Vcc, the time evolution of VT is VT(t) = (Vcc/2)(1 – 2/3exp[-2t /RiCi]). 

Therefore the time interval τ*  in which  VT < 1/3Vcc is τ* = RiCi ln (2) / 2, which must be τ* > 1 µs: 

this set the minimum values of the capacitor Ci> 100 pF.  

On the other hand VT must reach the stable value VT = 1/2Vcc before the end of the output pulse in 

order to avoid58 retriggering, and therefore must be Ci  < 2(R/Ri)C. 

13.1.3.  An astable pulser made with 555 timer  

If we short the trigger pin to the threshold pin  and we connect the discharge pin to the voltage 

divider (R1,R2) that charges the capacitor C, as in Figure 13.4, we obtain an astable pulser 59. 

 
Figure 13.4 

Let us start the analysis when the discharge pin is shorted to ground by the transistor T1:  the 

capacitor C discharges through R2, with time constant R2C, until VT = 1/3Vcc. At this time the 

———— 
58 Alternatively the input pulse must be shorter that the output pulse. 
59 For a nice simulation of this circuit see http://www.williamson-labs.com/pu-aa-555-timer_slow.htm 

 
Figure 13.3 
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comparator C2 toggles and the Flip-Flop switches-off T1. Now C is charged through  R1 in series 

with R2,  with time constant  (R1 + R2)C, until VS  = 2/3Vcc.  At this time the comparator C1 toggles 

switching-on T1, and the system reverts to the initial state. 

In the first phase the time evolution of the voltage VT (=VS) is VT(t) = 2/3Vcc exp(–t/ R2C), that 

gives for the "low" output duration: T1 = R2C ln2 " 0.693 R2C.

In the second phase ("high" output duration T2) the time evolution of the voltage VS (=VT) is 

VS(t) = 1/3Vcc + 2/3Vcc{1 – exp [–t/(R1 + R2)C]}, that gives T2 = (R1 + R2)C ln 2 " 0.693(R1 + R2)C.   

The output cannot be a square wave; in fact the ratio T2/ T1 = 1 + R1 / R2 >1 because the lower 

limit to R1 is set by the maximum current tallowed for T1:  Im = Vcc/R1 "100 mA. However 

assuming R2 / R1 = 100, the output asymmetry becomes only1%. Another way to obtain a better 

Symmetry is by adding a diode in parallel to R2, as shown in Figure 13.4. In this way we get in 

the second phase VS(t) = 1/3Vcc+(2/3Vcc –0.6V){1 – exp (–t/ R1 C)}, accounting for the 0.6V bias 

voltage of the diode during capacitor charging. For example with Vcc = 15 V we get T2 " 

0.76 R1C. 

13.1.4.  A square wave generator 

A pure square wave generator may be obtained from a 555 timer as shown in Figure 13.5, where 

the capacitor is charged and discharged through the output port.  

The resistor R1 (non necessary in CMOS timers) is required in TTL timers to allow the output 

voltage reaching the value + Vcc, instead of + Vcc – 1.7 V. The half-period of the square wave is 

T/2 = RC ln 2. 

An auxiliary output signal (load RL) is available at the discharge pin.  

Note that the load RL may be linked to any 

voltage: to + Vcc as in Figure 13.5, or to any 

other value in the range (+ Vcc , – Vcc), thus 

offering square wave with the desired 

amplitude.  Moreover the load applied to output 

2 does not affect the charge/discharge current 

of the capacitor . 

 
Figure 13.5 
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13.1.5. A linear voltage-to-frequency converter 

In chapter 10 , figure 10.15 shows a simple (quasi-linear) voltage-to-frequency converter made 

with two OA. Using one OA and one 555 timer CMOS60 we obtain a perfectly linear voltage-to-

frequency converter. In Figure 13.6 the OA is a differential  integrator: VT(t)= (Vo – Vi)t / RC, and 

the timer produces an output pulse Vo 

with width  ' o " 1.1RoCo.  

With a positive control voltage Vi the 

pulse frequency f is proportional to Vi: 

f = Vi / Vcc'o. 

Let us assume that at some time t= t* 

the integrator output voltage is 

VT(t*) > Vcc / 3, and the timer output is 

Vo = 0: therefore VT must decrease linearly with time: VT(t) = VT(t*) – Vi (t – t*) / RC, reaching the 

threshold voltage Vcc/ 3 at a time that we assume to be t=0. The output pulse begins (Vo = Vcc) and 

the differential integrator output linearly increases with the law: VT (t) = Vcc/3 + (Vcc – Vi)t / RC.  

The pulse stops at the time 'o, when VT ('o) = Vcc/3 + (Vcc – Vi)' o/RC, so that VT decreases 

reaching the threshold Vcc /3, at a time T, and the cycle is closed. During the negative ramp we 

have VT(t) = VT ('o) – Vi (t – ' o)/RC, and setting VT(T) = Vcc /3 we get T = Vcc'o /Vi, so that the 

frequency is  f = 1/T = Vi / 1.1RoCoVcc. 

The time constant RC of the integrator does not affect the frequency, but its value is not arbitrary, 

because it does affect the slopes of the VT(t) ramps: the peak value Vp  of VT(t) is 

Vp = Vcc/3 + (Vcc– Vi)'o / RC, and it must be Vp < 2Vcc/3 , so that, in the limit case Vi " 0 we must 

satisfy the condition RC > 3'o. 

13.2. IC voltage reference 

Chapter 6 describes some voltage reference sources made with zener and OA with negative 

feedback.  These circuits, however, are also commercially available as compact IC that may be 

classified in 5 classes: two-terminal devices (band gap voltage reference) , programmable zener, 

three-terminal fixed-voltage sources, three-terminal adjustable regulators, and four-terminal 

adjustable regulators. 

The band gap voltage reference are essentially zener with small temperature coefficient, down to 

———— 
60 Here the output toggles between +Vcc and  zero. 

 
Figure 13.6 
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0.1 ppm/oC, with a reference voltage VZ weakly dependent on current. The current available to 

the load is about Io = 10 mA, while the bias current is Ip" 1mA. Many values are available for VZ,

e.g.: 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.3, 4.7, 5.1, and 5.6 V for LM103xx (where xx stays 

for the value Vz), 1.22 V for LM113, 1.2V for AD589, 6.95 V for LM199/299/399, and 6.9 V for 

LM129/329.  

 
Figure 13.7 

The programmable zener are three-ports devices that must be used as shown in the diagrams of 

Figure 13.7a, or Figure 13.7b, depending on the device type. Without voltage divider (R1 , R2) the 

devices behaves as a normal zener. 

The three-terminal fixed-voltage sources (Figure 

13.8) generate a stable output voltage Vo (either 

positive or negative) in a wide range of input 

voltage Vi: from Vi " Vo to Vi " 10 Vo. With a 

minimum bias voltage of a few mA they may 

supply to the load currents up to 3 A, with a small 

temperature coefficient (10÷ 30 ppm /oC) for the 

output voltage Vo. Typical values of output voltage are: +2.5 V (AD580, AD1403), +5 V

(LM123/223/323, LM109/209/309, AD581),  and – 5 V (LM145/245/345).  

Low power models offer more values: (typically Vo= 5, 6, 8, 10, 12, 15, 18, 24 V): LM140/240xx, 

LM341xx, #A78Mxx, LM78xx (for positive Vo) and LM120/220/320xx, LM79xx, #A79Mxx 

(for negative Vo), where xx stays for the Vo value. E.g.: #A79M05 for –5 V, LM22018 for +18 V.  

The 3-terminal adjustable regulator typical wiring 

is shown in Figure 13.9. The output voltage Vo 

ranges from 1.25 V to Vi– 2 V, where the input 

voltage Vi is normally limited to 35V (40V in 

some models) . The value of resistor R2 may go 

down to zero (for minimum |Vo|).  

 
Figure 13.8 

 
Figure 13.9 
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There are model for positive output (LM150/250/350, LM117/317,TL317) and for negative 

output (LM137/237/337).  

The wiring in the 4-terminal adjustable regulator is similar, 

but here the role of the two resistors in the voltage divider is 

exchanged (see Figure 13.10): here the minimum output is 

for R1 = 0.  

For example in the positive output #A78G we get Vz = +5 V, 

and in the negative output  #A79G we get Vz = –2.2 V. 

13.3. Analog switches 

The ideal switch may be defined as a bi-stable two-terminal device that an external action may  

toggle between zero resistance Ron and infinite resistance Roff . 

The external command may be mechanic (e.g. manually operated switch) or electro-mechanic 

(relays) or simply a voltage signal (analog-switch).  

The real switch differs from the ideal one because the resistance Ron in the "closed" state is not 

zero and the resistance Roff in the "open" state  is not infinite. In the analog switches may be  

Ron > 100 $  and  Roff < 100 k$. 

The advantages of analog switches are mainly their speed, and the possibility of use low-power 

command signals. Analog switches may be implemented with bipolar transistors or with FET 

(typically CMOS). In the first case the current must flow through the two terminals of the switch  

in a given direction (unipolar switch), in the second case in both directions (bipolar switch, i.e. 

the two terminals may be interchanged) .  

There are many commercially available IC analog switches, with various configurations: double, 

quad or even more switches integrated inside a single chip. 

One of the most popular model is 

4016 61 (CMOS-Quad-Bilateral-

Switch) whose block diagram is 

shown in Figure 13.11.  

It must be biased by a maximum 

voltage  ((V = VDD – VSS) in the 

range from  +3 V up to +20 V but 

all terminals (included command pins), cannot go lower than VSS  – 0.5 V or higher 

than  VDD  + 0.5 V. The maximum current is 10 mA. Typical value of Ron is 300 $, and the 
———— 
61 CD4016 produced by RCA , or 74MM4016 from National, or  4066 with Ron " 90 $. 

 
Figure 13.10 

 
Figura 13.11 
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leakage current in the "open" state is of the order of fractions of nA. 

More sophisticated CMOS quad bilateral 

switches are the models  201 and 20262 . 

The block diagram is shown in figures 

13.12a and 13.12b, respectively. The first 

type has the 4 switches normally closed 

(with command voltage is "low"), while 

the second type  has the 4 switches 

normally open.. 

These IC have dual power supply, 

symmetric and referred to ground, with 

values in the range from ±5 V and ±18 V. 

The command threshold voltage ranges 

from+0.8 V and +2 V : e.g. VDD = +15 V 

the threshold is  +1.4 V.  The threshold voltage may be adjusted through the VR pin. 

The maximum current may be higher that 20 mA, with Ron " 60 $, and leakage currents of 

fractions of nA. 

The different chips are frequently identified by acronyms that define the functions: SPST means 

Single Pole Single Throw, QPDT means Quad poles Double Throw, and so on... (see Figure 

13.13 

 
Figure 13.13 

———— 
62 DG201 from Siliconix, or Maxim, or equivalent SW201 from Precision Monolitics and LF11201 from National, 

(and DG202, or equivalent SW202 and LF11202). 

 
Figure 13.12 
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14. Transducers, sensors and interfacing techniques  

 
The name transducer defines a device that transforms a signal expressed in a physical quantity 

(temperature, velocity, magnetic field...) into a signal expressed in a different physical quantity. 

Transducers are usually divided into two classes: sensors and actuators: The name sensor defines 

a device that converts the value of a physical quantity, or its changes into an electrical signal. The 

name actuator defines a device that converts electrical signals into changes of some physical 

quantity. Some transducers are reversible: they may be used either as sensors or as actuators.  

 
Table 14.1 

The term interfacing is used for the techniques used to transform the signal generated by a sensor 

into an electrical signal, or to adapt the amplitude and shape of the signal to required features, or 

to generate a suitable signal to drive a given actuator.   

In this chapter we will analyze only some of the many existing actuator/sensors, to give a general 

idea of the simplest interfacing techniques. We well consider, as examples, transducers for four 

physical quantities: temperature, force , light, and position. 

The temperature transducers may be used as thermometers, but also as level sensors, flux 

sensors, thermal conductivity sensors, ... The force transducers may also be used as pressure 

sensors, as sound generators/sensors as, ... The optical transducers, depending on the wavelength 

may detect/generate visible light, measure the flux/energy of light beams, or X-rays , or may be 

used as thermometers (bolometers) ...  
 

General features of a sensor 

• sensitivity  (ratio between the output signal and the change of the measured physical quantity) 
• resolution (minimum change of the input quantity that can be detected) 
• accuracy or precision (maximum error affecting the measurement) 

• range   (range where the measurement may be performed with the given accuracy ) 
• non-linearity (departure of the transfer function from linear behavior) 
• hysteresis (non-reproducibility of the transfer function after large changes) 
• dynamic characteristics (response time, rise-time, settling-time, damping, band-pass width) 
• signal/noise ratio (due to internal noise or pick-up noise) 
• output impedance (in series for voltage source, in parallel for current source) 
• drift    (thermal, aging) 
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14.1. Temperature sensors  

Temperature sensors may be divided in three broad classes: resistive sensors, diodes, and 

thermocouples. 

14.1.1. Resistance thermometers  

The resistive temperature detectors (RTD may be metals, semiconductors or carbon-resistors. The 

metallic RTD are usually made of copper, nickel or platinum. The platinum RDT are the most 

reliable because a Pt wire may be produced with very small impurity content, which makes the 

temperature coefficient of the sample highly reproducible (but they are very expensive).  

The resistivity of a pure metal follows approximately (at temperatures not too low) the linear law 

ρ(T) = ρ0 (1 + αT), where ρ0is the residual resistivity at T  ≈ 0 K, proportional to the impurity and 

lattice imperfections density, and α = (∂R/∂T)/R is the temperature coefficient: for platinum 

α  ≈ 3.85⋅10-3 K-1, for copper  α  ≈ 3.9⋅10-3 K-1 , for nickel α  ≈ 5-7⋅10-3 K-1. 

 
Figure 14.1 

Metallic RDT have small mass (and therefore fast response) and good linearity over a large 

temperature range. They must be biased by a constant d.c. or a.c. current. Sensors with small 

dimensions have low electric resistance (typically 100 Ω at room temperature) and this impose 

some care in the interfacing technique in order to make negligible the error due to the cables 

resistance. Their sensitivity is limited by the Joule self-heating, which requires reducing the bias 

current and therefore the signal amplitude. Typical useful ranges: platinum from 10 K to 800 K, 

nickel from -60 oC to +300 oC and copper from -70 oC to +150 oC.  

The simplest method to measure a resistance Rx  is the voltamperometric method: we measure the 

voltage drop Vx across Rx due to the known current Ip flowing through it.  By keeping constant Ip 

the Rx measurement reduces to Vx measurement. This technique may be accurate in the 4-

terminals configuration where the bias cables are different from the voltage-detection cables 
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Figure 14.2 

A simple interfacing circuit that uses the 4-terminals configuration is shown in Figure 14.2, 

where OA1 supplies a stable voltage reference63 Vo = Vz(1 + R2/R3), OA2 provides the constant 

current64 Ip = Vo/R4. The signal Vx =  RxIp across the thermometer is measured by the 

instrumentation amplifier made of OA3,65  with adjustable gain G(x) = (1 + 2/x)R7/R6. The scale 

factor dVx/dT is set by the potentiometer P1 that controls G(x), while the scale origin is set 

(through the differential amplifier OA4) by the potentiometer P2 that controls the fraction γ of the 

reference signal from the output signals: V(T) = G(x)IpRx(T)  – γVo. This circuit allows reading the 

temperature of the body thermally anchored to Rx in kelvin, Celsius, Fahrenheit, or its 

temperature changes with respect to a reference temperature. The resistances ri and rv of the 

bias/detection cables are explicit in Figure 14.2: the voltage drop across the resistances rv is made 

negligible by the very small input current of the high impedance instrumentation amplifier. 

The circuit of Figure 14.2 with d.c. bias cannot distinguish real temperature signal, due to 

Rx(T)   changes from offset voltages of the amplifier chain. This problem may be avoided 

replacing the d.c. reference Vo with an a.c. stable signal. 

An alternative method, that does not require a stabilized a.c. source, compares Rx with calibrated 

resistors in a Wheatstone bridge-configuration as in the circuit of Figure 14.3 where the bridge is 

biased by the sinusoidal voltage V66.  

———— 
63 See chapter  6. 
64 See chapter  7. 
65 See chapter 4 , §4. 
66 See chapter 10. 
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Figure 14.3 

Here the bridge is balanced for Rx/ R1 = R2/ R3. For example, assuming R2 = R3=R and using for 

R1 a set of calibrated resistors (decade resistor box), the measurement is performed by adjusting 

the value of R1 until the output error signal ΔV = GδV, is minimized. This gives Rx ≈ R1. The  

value of the current Ip does not enter the balance equation, therefore we do not need a stable a.c. 

bias voltage. : If R1 = Rx (1+ε) , with ε = (R1 – Rx) / Rx the error signal δV = V2–V1 may be written 

δV = RIp(ε/2) / (2+ε). This equation shows that the error signal is linear only for very small values 

of the unbalance parameter ε. 

This interfacing technique is frequently used with non-linear RTD and with high resistance RTD 

(that make negligible the cable resistances), such as semiconductor RDT. Semiconductor RTD 

(normally named thermistors) may have negative (NTC) or positive (PTC) temperature 

coefficient, depending on the dopant level and on the temperature range (Figure 14.4). 

 
Figure 14.4 

NTC thermistors have normally an exponential temperature dependence R(T) = Roexp(–B/T), 

which implies high sensitivity and non-linearity (α = ∂R/R∂T = –B/T2). The advantage of these 

sensors is the small size and the wide range of resistance value.  
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The thermistor characteristic equation is frequently written:  

R(T) = R(T0) eβ(1/T–1/T0) , 

where R(T0) is the reference temperature and the constant β (typically from 2000 to 5000 K) is 

named characteristic temperature, which measures the sensitivity. Another equation, commonly 

used, is the Steinhart-Hart equation67: T=1/{A1+ A2[ln(RT)]+ A3[ln(RT)]3} where A1, A2, A3, are 

parameters provided by the thermistor manufacturer, and RT is the thermistor resistance at 

temperature T. 

A technique to improve the linearity of the 

response in a bridge68 (within a limited 

temperature range: T1<T<T2) is shown in 

Figure 14.5. Note that this technique gives an 

output voltage increasing with temperature.  
 
The divider shown in Figure 14.5 gives: 

V2 = V⋅R/(R+RT), where RT is the NTC 

thermistor resistance at the temperature T; for  

� 

T → 0 ,   

� 

RT →∞  and   

� 

V2 → 0 , while for   

� 

T →∞  , 

  

� 

RT → 0  and   

� 

V2 →V .  

Therefore we may choose for R a value such that V2(T2) – V2(Tm) = V2(Tm) – V2(T1). Solving 

this equation we find the best value: R = (RT1RTm + RT2RTm – 2RT1RT2) / (RT1 + RT1 – 2RTm). As a 

first approximation  a good choice is R = RTm. 

14.1.2. Diode thermometer 

The diode thermometer exploits the quasi-linear temperature dependence of the forward voltage 

V of a p-n junction, for T > 30 K when the flowing current Id is kept constant.  

In fact the diode characteristic curve is Id  ≈ Io eqV/KBT, where Io ≈ Ae–Eg/KBT, KB is the Boltzmann 

constant, q is the electron charge, Eg is the semiconductor energy gap and A is a constant that 

depends on the junction area69.  

We get ln Id ≈ ln Io  + qV/KBT  = ln A – Eg/KBT + qV/KBT, or V – Eg/q = –(KBT/q) ln(A/Id), which is 

the linear dependence mentioned above: V  = Vo – γ{Id}T.  

The voltage Vo = Eg/q is the diode forward voltage extrapolated to 0 kelvin and γ  is the slope 

which depends logarithmically on Id, and decreases with increasing Id. The advantages offered by 

———— 
67  See http://en.wikipedia.org/wiki/Steinhart–Hart_equation 
68  See http://mathscinotes.wordpress.com/2011/07/22/thermistor-mathematics/ 
69 See also Appendix A.1 and § 8.4.1 
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this sensor is the linearity and the constant high sensitivity (about 2 mV/K).  

The diode thermometer requires a constant current 

bias (Id " 1 ÷ 100 #A): a.c. current cannot be used.  

A circuit suitable for diode thermometry is that 

shown in Figure 14.2 (obviously providing 

forward bias to the diode). A simpler circuit is 

shown in  Figure 14.7, where the potentiometer P1 

adjusts the bias current Id  and the output voltage is 

Vout = G[Vo– Eg + 7(Id)T] , where Vo = VR/(R + P2) 

and G = Ro/R1 is the differential amplifier gain. 

The potentiometer P2 provides the zero-scale 

adjustment.  

There are commercially available sensors (as 

National LM335 or Texas STP35) that give an 

output voltage of 2.73 V at 0 oC, with 

temperature coefficient of +10 mV/K. These are 

IC that include with the sensing diode also the 

interfacing circuitry. Other models as Analog 

Devices AD590, and AD592 , when biased by a 

voltage in the range from 4 V to 30 V, give an 

output current proportional to absolute 

temperature with temperature coefficient 1#A/K. 

 The working range is –55 oC +155 oC for AD590 and LM335, –25 oC +105 oC for STP35, and –

25 oC +105 oC for AD592. 

14.1.3. The thermocouple 

The thermocouple is a temperature sensor that exploits the temperature dependence of the 

electromotive force (emf) in a junction of two different metals (Seebeck effect) 70. This emf VTC 

is an increasing function of T, almost linear near room temperature with a temperature coefficient 

!VTC/!T of the order of a few #V/K.  

The main advantages of these sensors are: 1) speed, due to small mass; 2) easy thermal coupling; 

3) extended working range, from 10 K to 1000 K; 4) low cost; 5) no bias needed 71.  Drawbacks: 

———— 
70  For the Seebeck effect see http://en.wikipedia.org/wiki/Thermoelectric_effect 
71 For accurate measurements, non only the sensor but also the wires connecting the sensor to the interfacing circuit 

must be thermally coupled to the sample, in order to avoid  temperature gradients between the sample and the 
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non-linearity and low sensitivity. The sensitivity depends on the junction materials: the mostly 

used types are J: (Iron+, Constantan–) and K: (Cromel+, Alumel–), where Constantan is an alloy 

60%Cu-40%Ni (also 55%Cu-45%Ni), Cromel is 90%Ni-10%Cr, and Alumel is 95% Ni-2%Mn-

2%Al-1%Co. 

 
Figure 14.8 

Note that when two wires of a thermocouple are connected to the interface terminals (usually 

made of copper), two more junctions (usually at room temperature Ta) are made (see Figure 

14.8a): therefore any measurement of VTC is the sum of three VTC. 

Let us name 1, 2 the materials of the two thermocouple wires and 3 the material of the voltmeter 

terminals and the measured VTC
ab (Tx) the emf of the junction between a and b, at temperature Tx ; 

we get : VTC
m (Tx ) =VTC

31 (Ta ) +VTC
12 (Tx ) +VTC

23 (Ta ) .

Because VTC
23 (Ta ) +VTC

31 (Ta ) =VTC
21 (Ta ) = –VTC

12 (Ta ) , we get VTC
m (Tx ) =VTC

12 (Tx ) – VTC
12 (Ta ) .  Once known 

the function 12
TCV (T) for each value T, we only need to measure Ta  and to measure VTC

12  (Tx) to 

obtain Tx . 

To avoid the measurement of the room 

temperature, we may add a reference junction 

(kept at a fixed known temperature To , e.g. 0 oC 

ice-bath), so that the wires loop is closed at Ta 

with the same metal (1-2-1, in Figure 14.8b) and 

the contributions VTC
31 (Ta ) = – VTC

13 (Ta )  cancel out. 

Therefore the value of Ta does not affect the 

measured VTC
m (Tx ) = VTC

12 (Tx ) –VTC
12 (T0) .  

——— 
sensor. Thermal coupling may be achieved by pressing the sensor against the sample (and using suitable 
oil/grease or glue with high thermal conductivity).  

 
Figure 14.9 
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This quantity is published in the thermocouple data tables  for a given reference temperature T0.  

In place of the usual ice-bath for the reference junction, the room temperature changes may be 

accounted for by an electronic automatic correction provided by a diode thermometer.  An 

example of this approach is shown in Figure 14.10. The differential amplifier A1 must have high 

input impedance in order to make negligible the thermocouple wires resistance changes, and a 

high gain G because the source signal is of the order of few mV: with type J changes of 0.1 mV 

correspond to temperature changes of about 2 degrees. 

 With Ro = Ra = 100 kΩ, 

x = 1/9 and Ri = 10 kΩ we get 

G = 200 , i.e. a sensitivity of 

about 10 mV/K for this 

thermometer. The reference 

junction temperature 

compensation is achieved by 

injecting the signal V5 into 

the inverting input of A1: 

which is transferred to the 

output with unity gain 72. The 

signal V5 is the sum of signal 

V6 and signal –IcRp produced by the calibrated current a Ic (Ta) generated by the IC thermometer 

(e.g. AD590, AD592). The resistor Rp must be selected in order to compensate with ∂V5/∂T the 

changes ∂V2/∂T, generated by the junction at room temperature. With G = 200, an IC 

thermometer sensitivity ∂Ic/∂T = 1 µA/K and an output drift due to reference-junction 

∂V5/∂T = 10 mV/K, we must choose Rp = 10 kΩ. The potentiometer P allows adjusting the fraction 

V6 of the stabilized voltage Vz (e.g. for kelvin scale we set V6= 2.73 V at 0 oC) 

There are commercially available IC (Analog Devices: AD 594 for J-type, AD595 for K-type) 

that include all the circuit of Figure 14.5, plus a TTL-alarm output that toggles when the 

thermocouple loop is opened. 

14.2. Force and pressure sensors 

The force sensors measure the deformation of an elastic object subject to the applied force: the 

elastic constant relating force and deformation is determined by calibration with known force 

values. The sensing object may be a piezoelectric crystal or a resistive bridge obtained from a 

———— 
72 See § 4.1, where  V5 replaces the 0 voltage at one end of resistor R"a.  

 
Figure 14.10 
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semiconducting wafer or the flexible electrode of a capacitor, or any elastic object connected to 

any suitable strain-detector (e.g. optical or magnetic). When the measured force is due to the 

collisions of a gas molecules against the sensing object we get a pressure sensor.  

The force sensors measure the deformation of an elastic object subject to the applied force: the 

elastic constant relating force and deformation is determined by calibration with known force 

values. The sensing object may be a piezoelectric crystal or a resistive bridge obtained from a 

semiconducting wafer or the flexible electrode of a capacitor, or any elastic object connected to 

any suitable strain-detector (e.g. optical or magnetic). When the measured force is due to the 

collisions of a gas molecules against the sensing object we get a pressure sensor.  

Many force sensors (usually named strain gauges) are made of a metallic or semiconductor 

resistors (wires or films) whose resistance is strain-dependent: the strain produces changes in the 

object geometry (e.g. a metal bar under tension becomes longer and thinner, so that its resistance 

increases, under compression its resistance decreases).  

14.2.1. Piezoresistive pressure sensor  

Most of today's pressure transducers consist of a four-piezoresistor73 Wheatstone bridge 

fabricated on a single monolithic die using bulk-etch micromachining technology. The 

piezoresistive elements integrated into the sensor die are located along the periphery of the 

pressure-sensing diaphragm at the points appropriate for strain measurement: the diaphragm 

deformation, due to the applied pressure, changes the values of the 4 resistances and the output of 

the unbalanced bridge is a differential signal proportional to the bias voltage and to the applied 

pressure74.  

 
Figure 14.11 

———— 
73  See also http://en.wikipedia.org/wiki/Piezoresistive_effect 
74 For an extended description see http://www.mech.northwestern.edu/FOM/LiuCh06v3_072505.pdf 
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Figure 14.11 shows some details of a typical  piezoresistive pressure sensor. The four resistors 

are shaped usually with a serpentine-pattern to increase resistance and sensitivity: resistors AB 

and CD work in compressive strain, while resistors BC and DA work in tensile strain, so that the 

bridge sensitivity is doubled.  

In a sensor obtained from semiconductor wafer the resistors (R ≈ 5 kΩ) must be biased by d.c. 

voltage (typically 10V). For absolute pressure sensors the full scale may reach 5 MPa, and for 

relative pressure sensors ranges from some Pa to some MPa 75.  

In absolute sensors the diaphragm seals a small evacuated volume , while in relative sensors the 

reference pressure is the atmospheric pressure, or it may be different when measuring differential 

pressures. The sensitivity σ depends slightly on temperature: ∂σ/σ∂T ≈ –10–3 K–1, as well as the 

offset (∂Vos/V∂T ≈ 10–4 K–1) so that some IC pressure sensors include temperature compensation 

circuitry. Sensitivity may be adjusted by trimming the bias voltage.  

In Figure 14.12, the (Siemens KPY32) pressure sensor is biased by a voltage divider made by two 

resistors R1 and a (Siemens KTY 10) PTC thermistor thus increasing the bias voltage with 

temperature.  

 
Figure 14.12 

The gain of the instrumentation amplifier 1 is adjusted by potentiometer P2, and the offset is 

zeroed by P1, and temperature-compensated by the PTC in series to the resistor R7 which scales 

the–Vos signal at the inverting input  of the summer amplifier 2 . 

14.2.2 The capacitive transducer 

An elastic diaphragm made of conducting material, placed at small distance d from a flat rigid 

conducting electrode,  is a capacitor whose value C depends on d.  If we charge this capacitor 

with a voltage source Eo through a resistor R, as in Figure 14.13a, every displacement of the 

———— 
75 The SI unit (see http://en.wikipedia.org/wiki/International_System_of_Units) for pressure are pascal (Pa) and 

newton/square meter (N/m2). However other units as Torr (1mm Hg), atmosphere or bar (1 atm = 760 Torr = 
101.32 kPa; 1 bar = 750 Torr), are still frequently used. 
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diaphragm induces an electric signal V(t) across the capacitor. This proves that this circuit may 

be used as capacitive microphone. 

 
Figure 14.13 

The RC low-pass filter in Figure 14.13a has output impedance ZC || R, where R includes the 

internal resistance of the voltage source Eo. The pressure changes associated to an acoustical 

wave will be faithfully transformed into a voltage signal for frequencies %>1/RC. 

The capacitive microphone is a reversible transducer; in Figure 14.13b the voltage source drives 

the capacitor with a sinusoidal signal V(t) = Vcos %t produces an attractive force acting onto the 

diaphragm that is proportional to (V cos %t)2, so that the pressure is modulated at the frequency 

2%t. In order to generate an acoustical wave proportional to V(t), instead of [V(t)]2, we must bias 

the capacitor with a d.c. voltage Eo > V(t), and add the modulating voltage V(t) through a 

coupling capacitor C1 >> C, as in Figure 14.13c: the transfer function in this case is76  

j%RC1 / [1+j%R(C+C1)] ; the capacitive loudspeaker band pass is therefore 1/RC<% < 1 / RC1. 

14.3. Light sensors  

The light flux may be defined as  "energy carried by 

electromagnetic waves with wavelength between 100 nm 

(near ultraviolet) and 10 !m (near infrared)" 

(alternatively photons with energy between 12 eV and 

0.12 eV). Human eye, however, is blind over a large 

portion of this spectral range, so that we normally consider 

the visible light that has wavelength in the range from 

;= 0.38#m to ;= 0.78#m (figure 14.14).  

The scotopic vision curve (eye sensitivity in darkness) is 

mainly due to the rod cells receptors, in the retina, and the 

photopic curve (eye sensitivity in well lit conditions) 

———— 
76 See chapter 5 and Appendix B. 

 
Fig. 14.14   
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includes the cone cell receptors. 77 

When the wavelength is λ > 0.8 µm radiation is named infrared (IR), or thermal radiation, when 

λ <0.4 µm, is named ultraviolet (UV). For λ much smaller we have X-rays then gamma-rays, and 

for λ much longer we have radio waves. 

There are three mechanisms of light conversion into electrical signal: thermal (absorbed energy 

converted into phonons, i.e. lattice excitations, i.e. heat), internal photoelectric effect (electron-

hole pair generation in semiconductors), and external photoelectric effect (electron emission by 

metals). We therefore distinguish among: thermal sensors (thermopile, pyroelectric crystals, 

resistive bolometers), semiconductor sensors (photoresistance, photovoltaic cell, photodiode, 

phototransistor) and i photomultipliers. 

There are also transducers that convert electrical signal into light: thermal transducers (as light 

bulbs), gas discharge transducers (as arc lamps, fluorescent tubes, gas lasers), and semiconductor 

transducers (as LED and laser diodes). 

14.3.Thermal light sensors  

Thermal light sensor ha generally a very flat spectral response: constant sensitivity from IR to 

UV. The thermopile sensor is a miniaturized thermocouple made of many (up to 200) junction 

pairs assembled into a small device, with reference junction shaded and active junction exposed 

to the radiation (Figure 14.15). Commercially available thermopiles have dimensions comparable 

to those of a transistor in metal case, and a sensible area of the order of 1 mm2. They must work 

with chopped light, and at low frequency (from 5 Hz to 100 Hz).  

 
Figure 14.15 

The high sensitivity types (10 V/W), have an output impedance of the order of 1 kΩ, and saturate  

with an input power of about 0.1 W/cm2.  

Pyroelectric sensors78 exploit the property of some polar crystals to develop an electric field as 

response to a thermal gradient induced by heat absorption (e.g. due to electromagnetic radiation). 

———— 
77 The rod cells are very sensitive, but do not detect colors, while the cone cells are less sensitive but distinguish 

different colors. 
78 See also http://en.wikipedia.org/wiki/Pyroelectricity and http://en.wikipedia.org/wiki/Pyroelectric_crystal 
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Examples of pyroelectric crystals are: PbTiO3, ZrTiO3, LiTaO3 .By plating onto the faces of a 

pyroelectric crystal two metal electrodes we obtain a capacitor which becomes charged by the 

spontaneous polarization. Temperature changes produce polarization changes and therefore a 

weak a.c. current (10-12÷ 10-10 A) across the capacitor. This current may be converted into a 

voltage signal by an OA with high input impedance with a high feedback resistance (Ro ≈ 2 109 

Ω). Therefore a pyroelectric sensor may be seen as a current source, in parallel to a capacitor  Cp 

(some pF) and to a resistor Rp (some 1012Ω). The working frequency is in the range 

10 Hz ÷ 10 kHz, with a sensitivity  σa = ∂I/∂W ≈ 1 µA/W. 

 
Figure 14.16 

Figure 14.16 shows a possible interfacing circuit. The output signal δV = Ro δI= Ro σ aδW. Due to 

the small sensitivity the value of  Ro must be high, and therefore also the value of resistor R must 

be high to limit the offset Vos (R = Rp || Ro). 

14.3.2 Semiconductor light sensors 

Photoresistances are made of semiconductor and exploit the internal photoelectric effect to 

convert absorbed light into electron-hole pair generation. Only photons with energy higher than a 

threshold energy Eg (Energy Gap) typical of the used semiconductor are effective, therefore the 

resistance decreases only for light with wavelength below the threshold wavelength λs79, 

(generally within the IR region). The number of generated electron-hole pairs is proportional to 

the absorbed light flux, and the spectral response of the photoresistance is normally peaked at a 

value slightly lower than λs . 

The photoresistance sensitivity is proportional to the lifetime τ of the charge carriers80, and the 

useful frequency range is from 0 Hz to some kHz. The higher is the sensitivity the smaller is the 

band-pass because large values for  requires longer times for the photoresistance to recovery the 

original value after the light pulse is finished. Photoresitors must be biased (either with d.c or a.c 

———— 
79 The threshold wavelength λs is determined by the equation hc/λ = hν = Eg, where h is the Plank constant, ν the 

light frequency, c the light speed and the energy gap Eg is the energy required to promote an electron from the 
valence band into the conduction band, 

80 The lifetime is inversely proportional to the crystal lattice defects and to the dopant concentration of the 
semiconductor. 
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currents). Interfacing circuits are similar to those shown in Figure 14.1 and 14.2. 

The photovoltaic cell (also named PhotoDiode) is a PN junction 81, basically a diode, where the 

P-doped semiconductor is very thin, in order to allow incoming photons to penetrate the depletion 

layer where the generated electro-hole pairs may drift in the internal electric field and reach the 

external electrodes. This sensor does not need bias. The sensitivity has a peak close to ;s . 

Response is proportional to the light intensity only for the output short-circuit current.  

Figure 14.17 shows the characteristic I-V 

curves of a photovoltaic cell (where we 

assumed the current positive when flowing 

from anode to cathode): for dark condition 

(curve 1) and with light input (curve 2). 

Curve 1 is the usual diode characteristic 

curve, curve 2 is the same shifted 

downward by a quantity determined by the 

illumination. 

In quadrant A the junction in reverse-biased and in this configuration it is normally named 

photodiode (current flowing from cathode to anode). In quadrant B the junction in forward-biased 

and this configuration is normally named solar cell: values Vn  and In  give maximum output 

power W = V6I. (Solar cell I-V curves are normally traced with current positive when flowing 

from cathode to anode, so that the cell produces energy W>0 in quadrant B, and in quadrant C it 

dissipates energy : W < 0) 

 
Figure 14.18 

Photocells have the best linearity when short-circuited: we may get zero bias with the circuit of 

———— 
81 See  Appendix A1. 

 
Figure 14.17 
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Figure 14.18a where the current-to-voltage converter keeps the cathode at virtual ground through 

the feedback resistor Ro. In this circuit the output Va is affected by the OA input bias current Ib 

that becomes important for small values of photocurrent I:  Va= Ro(I + Ib).  

We may add a balancing resistor Ro as in Figure 14.18b, so that Vb = Ro(I + Ios) , reducing the 

error of a factor 10, but introducing a small bias to the photocell : V1 = V2 = RoI.  

The problem is completely solved by circuit of Figure 14.18c, that requires an OA with  high 

CMRR: we get V1 = V2 = RoI and Vc = RoI + V2 = 2 RoI.  

An alternative circuit is shown in Figure 14.18d, where the photocurrent signal I across Rp 

(affected by the OA input bias current Ib), gives the output Vd = Rp (I + Ib)(1 + Ro/R1), but the 

diode is here slightly forward biased.  A zero-bias is achieved in the circuit of Figure 14.18e, that 

gives the output Ve = Rp (I –Ib)(1 + Ro/R1). 

The circuit of Figure 14.18f, provide a reverse bias to the photodiode. In this case an extremely 

small dark current flows across the PN junction, due the thermally-generated electron-hole pairs 

(10 pA /mm2), decreasing at low temperature. This configuration, suitable for weak light fluxes, 

has slow response because most photons generate charge carriers out of the depletion layer that 

must reach the electrons by the slow diffusion process.  

In the PIN photodiode82, shown in Figure 

14.19, the thickness of the depletion layer is 

increased by the reverse bias: this makes 

faster the response by increasing the drift 

velocity of the photo carriers (and by 

decreasing the effective capacitance). 

In the phototransistor (NPN) the most-

common variant is an NPN bipolar transistor 

with an exposed base region; the  

illuminated junction is the base-collector, which behaves as a photodiode. The inverse current is 

injected into the N-doped emitter region with an amplification of two order of magnitude 83. The 

equivalent circuit is shown in Figure 14.20. The response is linear only for low illumination. 

 
   Figure 14.20 

———— 
82 The acronym PIN stays for P-layer/Intrinsic-layer/N-layer, because they are obtained from pure silicon wafer and 

pure semiconductor is named intrinsic. 
83 See Appendix A. 

 
Figure 14.19 



  117 

 

14.4. Position sensors  

Position sensors may be relative to some reference value or absolute. 

Absolute position sensors are, for example, those based on the time-of-flight of a traveling 

electromagnetic or acoustical pulse that is reflected by the target object (radar and sonar). 

Relative position sensors (that measure distance changes), as the inductive sensors, need some 

calibration. 

14.4.1. The sonar  

The name SONAR is an acronym for SOund Navigation And Ranging. This devices emits a 

pulse of sound and measures the time elapsed before detection of the echo produced by the pulse 

reflection on the target. It has many application in marine technology but also in other fields84. 

The basic structure of a sonar includes a capacitive transducer (beeper/microphone) that emits a 

short burst of ultrasonic pulses and detects the echo, plus a clock that measures the time elapsed .  

 
Figure 14.21 

The sound velocity in air c is known: c=(331+0.6t)m/s, where t is the temperature in Celsius; if T 

is the time elapsed, then the distance X (covered in the to/from travel) is calculated as X=cT/2.  

The frequency of the ultrasound wave is normally some kHz, and the sensor range is typically 

from 0.2m to 20 m. 

14.4.2. The inductive position sensors  

The inductive position sensors may be LVDT 

(Linear Variable Differential Transformer): this 

device is a transformer the coupling between 

primary and secondary windings depends on the 

position of the mobile ferrite core. The primary 

coil is driven by the excitation signal and the 

output may be the sum or the difference of two symmetric secondary coils (Figure 14.22). 

———— 
84 For details on interfacing a sonar see http://www.acroname.com/robotics/info/articles/sonar/sonar.html; see also 

http://www.vernier.com/products/sensors/motion-detectors/. This sensor is also used in Polaroid cameras for 
autofocussing.  

 
Figure 14.22 
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The two secondary coils may be connected in series with opposite windings: therefore the output 

amplitude is minimum when the core is centered and increases when it moves in both directions. 

Using a phase-sensitive detector (lock-in, Figure 14.23a) we may get a linear output proportional 

to the displacement (positive in one direction and negative in the opposite direction). 

A simpler circuit is shown in figure 14.23b, where the output is provided by a pair of diodes and 

a low-pass filter. 

 
 Figure 14.23 

 
Another type of inductive position sensor is the LVRT (Linear Variable  Reluctance Transducer) 

where two coils are wired as inductive half-bridge (Figure 14.24a), and the the unbalance bridge-

output measures the core displacement. 

Another configuration is a fixed core with a 

ferromagnetic object that changes the 

reluctance of one arm of the bridge as shown 

in 14.24 b.. 

14.4.3. The resistive position sensors  

The potentiometer, a three-terminal resistor with a 

sliding contact that forms an adjustable voltage 

divider, may be used as angular position sensor 

(rotation sensor), if the axis is mechanically linked 

to a rotating object, or as linear position sensor, 

depending on its geometry (Figure 14.25). 

With respect to the inductive sensors, the resistive 

sensor have the drawbacks of friction and wearing (due to the sliding contact), but may be biased 

either by d.c. or a.c. voltages. The linear displacement range may be  from 5 cm to 50 cm, and the 

angular range from 270° to 3600° (in the ten turns helipots). 

  

 
Figure 14.24 

 
Figure 14.25 
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14.4.3. The optical position sensors  

The limited range of resistive rotation sensors is absent in the digital optical rotation sensors 

(optical encoders)85 that use an optical threshold and a slotted disc (Figure 14.26). 

. 

 
Figure 14.26 

The angular position of the disc (and of the object attached to the shaft) may be accurately 

encoded and the resolution (defined by the angular separation of the slots) is not affected by the 

range. Besides the rotary models, there are commercially available also linear models, which may 

offer a range up to 30 m.  The most popular application of such encoders is the old PC "mouse" 

(recently replaced by the "optical mouse" that exploits a different technique, i.e. digital image 

correlation). 

 

———— 
85 For a list of manufacturers see http://www.sensorsportal.com/HTML/SENSORS/RotationSens_Manuf.htm 
 



120   

 

15. The OA with double feedback 

 
In the previous chapter we analyzed some circuits where the operational amplifier was working 

with double feedback (both positive and negative), and we noted that some care must be taken in 

order to avoid canceling the effective feedback, leading to unstable open-loop behavior. The 

method adopted to perform the analysis was based on the ideal OA approximation, which may 

lead to wrong conclusions if we do not take into account the real frequency dependence of the 

open-loop gain of the OA.  

Let us consider the circuits shown  in Figure 15.1. 

 
Figure 15.1 

The two circuits are identical: they only differ for the choice of input, and consequently of the 

feedback fractions β+ (positive feedback) and β– (negative feedback). 

The block diagram for both circuits is drawn in in Figure 15.2. 

 
Figure 15.2 

Using superposition principle we get Vo = α±
 AVi + (β+ –β–)Vo, or  

 Vo/Vi = α±
 A/[1–βA],  [15.1] 

where β = (β+–β–) is the total feedback, and α± is a coefficient different for the two circuits. From 

Figure 15.1 we get β– = Ra/(Ra+Rb), β+ = Rd/(Rc+Rd), with α+ = Rc/( Rc+Rd), for the non-inverting 

amplifier, and  α– = Rb/(Ra+Rb) for the inverting amplifier. 

Relation [15.1], for ideal OA (A → ∞) yields  

 Vo/Vi = –α±
 / β. for  A → ∞ [15.2] 

This is the same result obtained in chapter 3 (both in §3.1 and §3.2), without positive feedback 

(β+=0). On the other hand, by letting β+ = β–, which yields total feedback β = 0, the OA works in 

effective open-loop, that predicts divergence for Vo, when A → ∞.  

Vo
Ra Rb

–
+
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When #+ > #– (i.e. # > 0), relation [15.1] is cannot be always approximated by the simple relation 

[15.2] for A - %. We must take into account the frequency dependence of both A(s) and #(s), 

where s is the complex frequency A general discussion of this situation is not trivial 86. Here we 

will analyze some important specific cases.   

If we assume the typical frequency dependence for the open-loop gain A(s) = Ao/(1 + s/%o) of the 

OA, and a real feedback #, relation [15.1] becomes: 

 Vo/Vi = T(s) = +±
 Ao/(1 – #Ao + s/%o), [15.3] 

a function with a pole on the real axis s = %o (#Ao – 1). The Laplace transform analysis (see 

Appendix B.6) predicts divergence when the transfer function has a pole on the real axis. 

Therefore the approximation [15.2] is limited by the 

condition #Ao < 1, for any value of Ao, also for Ao - %.  

Let us consider some practical example: in §5.1 we 

introduced a positive feedback in the circuit of Figure 5.3, 

to improve a zener-stabilized voltage source. In Figure 

15.3 is drawn the same circuit, but with exchanged inputs 

in the OA (and omitting the voltage divider for simplicity: 

we will assume a reverse biases zener).  

The analysis is the same. By using the superposition principle: Vo = –AVz + A[R3/(R3+ R2)]Vo, , 

or Vo[1–(R3+ R2)/AR3]=–Vz(1+R2/R3), that for A - %, gives Vo = –Vz (1+R2/R3). 

This conclusion is wrong !! In fact it predicts a forward biased zener (Vo <0) contradicting our 

initial assumption.  

A second example of double feedback was given in 

§8.8: here it is easy to show that the two inputs may be 

exchanged as in the circuit of Figure 15.4. The 

performance is the same as reported by various 

authors87. 

———— 
86 A detailed analysis may be found in Feedback and control system analysis and synthesis, J.D'Azzo et al. 
87 See The Art of Electronics, P. Horowitz et al., fig. 4.4, page 151. 

 
Figure 15.3 

 
Figure 15.4 
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16. Guide to experiments 

This chapter suggests some practical exercises with the circuits described in previous chapters, 

giving in most cases only suitable values for the passive elements and sometimes also hints for 

performing elementary measurements.

16.1. Some preliminary  suggestion 

The simplest method to test a circuit is to mount it onto a solderless breadboard88, (see Figure 

16.1 and Appendix C.6) that allows fast checking without soldering the components. More 

complex circuits should be soldered onto a stripboard89: 

soldered contacts are in fact more reliable than pressure 

contacts. 

For the IC components, however, it is better to use  pressure 

sockets that allows avoiding overheating the IC pins with the 

soldering iron. Pressure sockets 

(Figure 16.2) should be soldered to 

the stripboard before inserting the IC.  

Ancillary basic instrumentation is: dual power supply (±15 V, possibly 

with adjustable outputs), digital tester (2 or 4 digits), a signal generator 

(1Hz÷100 kHz) and an oscilloscope (2 channels).  

The default OA is a generic one (#A741 or equivalent), the default bias voltage is dual (Vcc = 

±15 V), filtered by two capacitors connected to common ground. Generic OA may also be used as 

comparators, but a better choice is to use models that avoid latch-up (specified in Appendix D.3).  

For the timer 555 the timing RC filter should use values in the ranges 10 k$÷10M$ and 100 

pF÷10 #F. The minimum pulse width is about 10 #s. 

Signal generators: the output impedance of commercial 

oscillators is normally 50 $; many models offer also an 

adjustable d.c. offset(that might be useful for exercises with 

circuits of chapter 8. The suggested amplitude is 1 V peak-

to peak.  

A fast test of phase relation between two signals is 

achievable using the oscilloscope in X-Y mode: this means 

that one signal is fed to vertical deflection amplifier (channel Y) and the other signal to the 
———— 
88  See http://en.wikipedia.org/wiki/Breadboard 
89  See http://en.wikipedia.org/wiki/Stripboard 

 
Figure 16.3 

 
Figure 16.1 

 
Figure 16.2 
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horizontal deflection amplifier (channel X).  

The Lissajous curve traced onto the oscilloscope screen in X-Y mode (Figure 16.4) by the 

synchronous signals Vx and Vy, gives the phase φ delay. Assuming equal amplitude: Vx=Vy=Vo, 

(eventually by adjusting the channel's gain) we get: Vx = Vocos(ωt)  and  Vy = Vocos(ωt + φ). If φ 

= 0 (or φ = π), the trace is straight line with slope π/4 (or 3π/4) with respect to X axis, and if  φ = 

π/2 (or φ = 3π/2), the trace is a circle. For intermediate values of  the trace φ is an ellipse, whose 

major axis is in the first quadrant for 0 < φ < π/2 and in the third quadrant for π/2 < φ < π. In this 

case, after centering the ellipse on the screen, we measure the intercept Y(0)  of the trace on the Y 

axis and we get φ = arc sin [Y(0) / Vo], as proven by the relations Vx/Vo = x = cos ωt,   and  Vy/Vo 

= y = cos(ωt + φ) = cos ωt cos φ – sin ωt sin φ. 

For x = 0 , sin ωt  = 1 and therefore y(0) = sin φ. 

 
Figure 16.4 

16.2 Exercises  

In this section each exercise refers to the circuit shown in the corresponding Figure  
 

Figure 3.1, 3.2 and 3.3  Inverting and non-inverting amplifier 
Choose Ri =1 kΩ, Ro=1÷10 kΩ, R = 0  Ω, Vi= 0÷±10V. Measure Vo for several Vi values and for  

different Ro values within the suggested ranges. Note how changes the input voltage range for 

linear behavior with different gain values. In the circuit of Figure 3.2 set Ro = 0 Ω, and verify that 

you get a follower (Figure 3.3). 

Vo

sin φ = 1
( φ  = π / 2 )

Vo

Y(0)

0 < sin φ < 1sin φ = 0
( φ  = 0 )

Y

X

sin φ  = Y(0) / Vo

Y=X Y(0)

Vo

Y(0)
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Y=-X

0 < sin φ < 1 ( φ = π )
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Figure 3.4  Differential amplifier 

 
Figure 16.5 

 
a) Offset zeroing, with G = 100. (we neglect Ios). Ri1 = Ri2 = 1 kΩ, Ro1 = Ro2 = 100 kΩ.  

Short the inputs V1 and V2 to ground. Achieve offset-null (Vo=0) through a 20 kΩ 

potentiometer connected to pins 1–5 (see § D.2.1 or § D.2.2 ).  

b) Measurement of differential voltage with G = 10. Choose: Ri1 = Ri2 = 10 kΩ and 

Ro1 = Ro2 = 100 kΩ, (carefully select 1% resistors, or use a small resistance trimmer in 

series to the smallest resistor to balance the circuit. Using the voltage divider ABCD 

shown in Figure 16.1 (Ra = Rc = 10 kΩ potentiometers, Rb = 100 Ω potentiometer, 

VA = +15V, VD = –15 V). Connect B to V1 and C to V2 ; measure with a multimeter 

voltages VC, VB , VC – VB and Vo, for several values of Ra, Rb, Rc. Exchange inputs V1 

and V2, and repeat the measurements.  

c) Measurement of differential gain, with G = 100 (Ri1 = Ri2 = 1 kΩ and Ra = Rc = 10 kΩ). With 

reference to Figure 16.5: short D to ground and connect A to the output E of a sinusoidal 

oscillator (frequency ≈ 1kHz, Vpp ≈ 1V) and to channel-1 of the oscilloscope; connect B to V1 

and C to V2, and Vo to channel-2 of the oscilloscope. Measure Vo and VE and calculate the 

differential gain Ad = Vo/(VC – VB), where (VC – VB) ≈ –VERb/(Ra + Rb + Rc), for different 

values of Rb.  

d) Measurement of common-mode gain. (Rd =10 kΩ). Connect E to F and G to both V1 and V2. 

Connect VG to channel-1 and Vo  to channel-2. Note that Vcm= VG, Ad= Ro/Ri and 

Vo = Ad(Vos + Vd) + AcmVcm . Remember that Vos is a  d.c. voltage while VG is a.c. voltage. 

Letting VG = 0 (you get Vos= VoRi/Ro) adjust the offset-null. Now you may measure 

Acm = (Vo / VG) for several values of VG. Minimize Acm by adjusting resistances 

Ro1,Ro2,Ri1,Ri2 
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Figure 3.8   Evaluate Vos , Ib2 and Ios 

a) Choose Ri = R = 100 Ω, Ro = 10 kΩ. By neglecting ΔVo = –RoIos we get Vos ≈ VoRi/Ro. Measure 

Vos for different OA (e.g. µA741 and TL081). Adjust the offset-null with a 20 kΩ trimmer 

connected to pins 1-5 (§ D.2.1 or § D.2.). Follow the offset drift while heating the OA with an 

hot soldering iron (do not exceed in heating). 

b) R = 1 MΩ pot. Remove Ri  (replace Ro with a short). You get Vo = V1 = V2 +Vos= –RIb2  

Assuming Vos ≈ 0 (previously adjusted to zero) you get: Ib2 = –Vo/R. Note that the output offset 

depends on R Compare Ib1 values for different OA. 

c) Choose Ri = R = 10 kΩ, Ro = 1 MΩ. Because R ≈ Ri || Ro, we get Vo = Vos – RoIos ≈ – RoIos, that 

gives an evaluation of Ios. By removing R you get Vo = RoIb1, i.e. an evaluation of Ib1 = Vo / Ro.  

 

Figure 4.1 Differential amplifier with variable gain 
Choose Ri = Ro = Ra = 100 kΩ (both branch' and branch"), R = 100 kΩ  pot in series to 1 kΩ 

(0.01 < x < 1.01). Measure the differential gain while changing R. Input a.c. signal as in Figure 

16.1 (Ra = Rc = 10 kΩ, Rb = 100 Ω). 

 

Figure 4.2   Differential amplifier with linearly variable gain 
OA = TL082, R1 = 10 kΩ, Ro = 100 kΩ, R =  100 kΩ pot, R' = 100 kΩ. Demonstrate that the 

differential gain is: G=Ro/Ri[(x+R'/R)/(1+R'/R)], 5<G<10. Note that, with the smallest (R'+xR) 

value, the output Vo range is reduced. 
 

Figure 4.3   Differential amplifier with linearly variable gain 
OA = TL082, R1 = 10 kΩ, Ro = R = 100 kΩ, xR = 100 kΩ pot, R' = 100 kΩ. Demonstrate that the 

differential gain is: G Ro/Ri(x+R'/R), 10<G<20.   

 

Figure 4.4   Differential amplifier with linearly variable gain 
Choose OA  = TL082, R2 = R'2 = R1 = R'1 = 10 kΩ, xR = 100 kΩ pot. Note that the gain does not 

depend on  R2 and R'2, until R2 = R'2. 

 

Figure 4.5  
Ro = R'o = R1 = R'1 = 10 kΩ, xR = 100 kΩ pot in series to 10 kΩ. 2 <G< 40. 

 

Figure 4.6 Instrumentation amplifier 
OA = TL084. Ro = R1 = R2 = R3 = 100 kΩ, xR = 100 kΩ pot in series to 10 kΩ. Note that R2 may be 

different from R3: the gain value is determined by their sum.  
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Figure 4.7    Amplifier with positive or negative gain  
Values suggested for (–1 < G < +1): Ro = R1 = 10 kΩ, R = 100 kΩ pot, R2 = ∞ (removed). Values 

suggested for ( –10 < G < +10): Ro = R1 = 1 kΩ, R = 10 kΩ pot, R2 = 1.11 kΩ. 

 

Figure 5.2    Voltage source 
Vcc= +15V / 0V. R2= R1=10 kΩ. RL 10 kΩ in series to an amperometer (multimeter). The 

voltage V, may be obtained from +Vcc through a voltage divider as VG in Figure 16.5.  
 

Figure 5.3    
Use 6.9 V  zener (e.g. LM329) with Rb ≈ 5 kΩ, Ra ≈ 10 kΩ. For Vo = +10V, choose R1 = 3.3 kΩ (Iz 

≈ 1mA), R2 = 10 kΩ, R3 = 22 kΩ. For Vo = –10V, reverse the zener and the diode. 

 

Figure 5.4  
As the previous circuit, but exchange the values of R2 and R3.  
 

Figure 5.5  Twin voltage source 
Use 6.9 V  zener , R1 = 2 kΩ,  R2 = 10 kΩ, R3 = 50 kΩ. Using power OA (µA759, µA791, TC365, 

L165, 3571), this may give a dual power supply ±Vz, from a single one with Vcc > 2Vz. 

 

Figure 6.1 , 6.2 , 6.3   Current sources 
Ri = 1 kΩ, RL = 10 kΩ pot in series to an amperometer.  Measure IL, for various RLvalues, as a 

function of Vi, between 0 and Vcc/2 for circuit 6.1a, and from 0 and –Vcc/2 for circuit 6.1b. 

Check the ranges of IL and of RL within which the circuit does work properly. In the circuits of 

Figures 6.2 , 6.3 use a battery for Vi, or another voltage source referred to a ground insulated 

from the ground of the power supply used to bias the OA. 
 

Figure 6.4   Voltage controlled current source 
R1 = R2 = 10 kΩ, Ro = R3 = 1 kΩ, RL = 5 kΩ pot in series to an amperometer. The capacitor (some 

pF) may be  be placed in parallel to Ro. Verify that IL does not depend on RL, and that is may be 

controlled by the input voltage Vi (that must be generated by a low output impedance source, to 

avoid affecting the R1 effective value. 

 

Figure 6.5  
R1 = 1 kΩ, R2 = 9 kΩ, R = 10 kΩ, C = 10 nF, RL = 5 kΩ pot in series to an amperometer. Verify that 

IL does not depend on RL, and that is may be controlled by the input voltage. 
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Figure 6.6 
OA = TL082, R1 = R2 = 10 kΩ, R3 = R4  = 1 kΩ, R5 = 1 kΩ in series to a 100 kΩ pot. RL =  5 kΩ pot 

in series to an amperometer.  C = some nF. Verify that IL does not depend on RL, and that is may 

be controlled by R5 or Vi. 

 

Figure 6.7 
OA = LF356, 1.2 V zener, Ro = 5 kΩ, R = 1 kΩ in series to a 100 kΩ pot, RL = 10 kΩ pot in series 

to an amperometer.  Measure IL as a function of R and RL; evaluate ILmax and Rmin. 
 

Figure 7.1  Half-wave rectifier 
OA = µA741, diodes= 1N914, Ro = RL = 1 kΩ. Small input signal ( |Vin| < 1 V). Use the 

oscilloscope in X–Y mode. Compare results for circuits of Figures 7.1a and 7.1b, with and 

without diode D2. Replace bipolar OA with FET-input OA, choose Ro = 100 kΩ, diodes 

1N456÷1N459,  and note the different behavior.  
 

Figure 7.2   Inverting half-wave rectifier 
R = R' = RL = 10 kΩ, FET input OA, or, using bipolar OA, insert a resistor (R/2) at the non-

inverting input. Use the oscilloscope in X–Y mode. 
 

Figure 7.3   Full-wave rectifier 
Ro = R1 = R'1 = R2 = R'2 = 10 kΩ, Ri =  10 kΩ pot in series to 1 kΩ, for gain trimming. R'o =  2 kΩ 

pot in series to 9 kΩ, for output symmetry. 
 

Figure 7.4 
Ro =  10 kΩ pot in series to 10 kΩ, R' = R = 10 kΩ . Load the output with 10 kΩ resistor. Use 

C≈100 pF capacitance to avoid oscillations. Note that the value of Ro does not affect the circuit’s 

behavior. 
 

 Figure 7.5 
R1 = R'1 = Ri = 2R2 = 10 kΩ (R2 may be the parallel of two 10 kΩ resistors), Ro =  50 kΩ pot in 

series to 10 kΩ for gain trimming.  
 

Figure 7.6 
R' = R = 10 kΩ, R1 = 5 kΩ. Use C≈10 pF in parallel to D2, or in parallel to both diodes to prevent 

oscillations. 
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Figure 7.7 
Must be G=R'/R. Choose G=2, i.e. R2 = 3R; e.g. R2 = 3kΩ, R' = 2 kΩ., R1 = R = 1 kΩ.  

 

Figure 7.8 
 R1 = R2 = R3 = 10 kΩ. R4 = 20 kΩ (R4 may be the parallel of two 10 kΩ resistors). A capacitance 

in parallel to D1 helps avoiding oscillations.  
 

Figure 7.9    Peak detector 
R ≈ 100 kΩ. C ≈ 10 nF (ceramic, must be a small value if you need a fast peak-detector). Choose 

diodes with low leakage (e.g. 1N458). OA : FET-input. Use a double-channel digital scope to 

compare input and output while manually changing input (starting from Vi=0) with a 

potentiometric divider as that shown in Figure 16.5. 
 

Figure 7.10  Improved peak detector 
 R1 ≈100kΩ, R2 ≈ 20 kΩ. C ≈ 10nF. OA1 = generic (e.g. µA741), OA2 = FET-input OA (e.g. 

LF356). Or use dual FET-OA (e.g.  LF353, TL082). 

 

For all the exercises of Chapter 8 use a sinusoidal oscillator (e.g. 1V amplitude) and a two-

channel oscilloscope to observe Vo and Vi while changing the frequency . 

 

Figure 8.1b    Integrator 
R = 10 kΩ, Ro = 1 MΩ, C = 10 nF. Use a sinusoidal oscillator without offset (it would be amplified 

of a factor 100!) . Start from high frequency (≈ 50 kHz) decreasing until |Vo| = |Vi|. Evaluate the 

phase-lag of Vo with respect to Vi. Draw the plot of Vi / Vo versus ω, and verify that the slope is 

RC. To remove possible residual input offset, use an high-pass filter between oscillator and 

integrator input. Switch to a square-wave oscillator to drive the input and observe that the output 

is a triangle-wave.  
 

Figure 8.2b   Differentiator 
Ri  = 1 kΩ, R = 100 kΩ, C = 10 nF. Start from low frequency (≈ 100 Hz) increasing until |Vo| = |Vi|. 

Evaluate the phase relation between Vo and Vi. Switch to a square-wave oscillator to drive the 

input and observe the output signal. 
 

Figure 8.4  Active low-pass filter 
Choose R1 = R3 = R4 = 10 kΩ, C2 = C5 = 10 nF. You get G =1, f = ω0/2π ≈ 1.59 kHz and ζ = 1.5. If 

you double the values of resistors you see that the values of   G and ζ do not change, and ω0 is 
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reduced of a factor 2. Increase C2 of a factor 10 and decrease C5 of a factor 10, you see that G 

and ω0 do not change, and ζ scales of a factor10. Observe that the maximum of the transfer 

function amplitude is approx. G/2ζ (when ζ << 1). Replace R1 with a 100 kΩ pot and observe the 

dependence of G and ζ on R1. 

 
Figure 8.5 Active high-pass filter 
Choose C1 = C3 = C4 = 10 nF, R2 = R5 = 10 kΩ. You get G = 1, f0 = ω0/2π ≈ 1.59 kHz and ζ = 1.5. 

If you double the values of capacitances you see that the values of G and ζ do not change, and ω0 

is reduced of a factor 2. Increase R5 of a factor 10 and decrease R2 of a factor 10, you see that G 

and ω0 do not change, and ζ scales of a factor10. Observe that the maximum of the transfer 

function amplitude is approx. G/2ζ (when ζ << 1). 
 

Figure 8.6    Band-pass filter 
Choose R1 = R2 = 10 kΩ, R5 = 20 kΩ, C3 = C4 = 10 nF.  You get G = 1, f0 = ω0/2π ≈ 1.59 kHz and 

Q=1. If you double the values of capacitances you see that the values of G and Q do not change, 

and ω0 is reduced of a factor 2. Divide R1 and R2 by 2, and double R5 , you'll se that ω0 does not 

change, while Q  doubles and G is multiplied by 4. 
 

Figure 8.12   Low-pass VCVS 
Choose R1 = R2 = 10 kΩ, C3 = C4 = 10 nF. You get f0 = ω0/2π ≈ 1.59 kHz and ζ = 1. Increase C3 of 

a factor 10 and decrease C4 of a factor 10, you see that ω0 does not change, while ζ scales of a 

factor10.  
 

Figure 8.13    High-pass VCVS 
Choose R3 = R4 = 10 kΩ, C1 = C2 = 10 nF. You get f0 = ω0/2π ≈ 1.59 kHz and ζ = 1. Multiply R4 

by 10 and divide R3 by 10, you see that ω0 does not change, while ζ scales of a factor10.. 

 

Figure 8.15    State-variable filter 
With R1 = R2 = R = 10 kΩ, C = 10 nF, you get f0 = ω0/2π ≈ 1.59 kHz, ζ = 0.5, Q = G1 = G2 = 1. 

Compare the three output signals with the input while changing frequency. Letting R2 > 100 kΩ 

you ζ ≈ 0.1,  G1 ≈ 2, Q ≈ 5 . 
 

Figure 8.16   Notch filter 
Choose R1 = R2 = 10 kΩ, C = 10 nF and measure  ω0 and Q. 

 



130   

 

Figure 8.18    Band-pass NIC filter 
With Ra = Rb = 10 k$, Ca = Cb =10 nF, R2 = 10 k$, R1 = 15 k$ in series to a 5 k$ pot, you get 

f0 = %0/2& " 1.59 kHz. By trimming the pot, adjust the value G*= R1/R2  approaching the value 2, 

and observe the Q divergence.  

 

Figure 8.19 , 8.20  Gyrator 
Choose R1 = R2 = R3 = R5 = 10 k$, C = 100 nF. You get L* = 108 C

=1 mH. Make an R*L* low-pass filter by driving the effective 

inductance L* through a resistance R=10 k$( Figure 16.6). 

Measure the break frequency of the R*L* filter. Note that the 

effective R* resistance is R + Rs , where Rs is the output 

impedance of the oscillator (typically 50$). To avoid oscillations use a small capacitance ("10

pF) in parallel to R3, in circuit of figure 8.19, or R5, for figure 8.20.  
 

Figure 8.21 Capacitance multiplier 
Use Ri = 10 k$, Ro = 100 k$ or 1 M$, C = 10 nF. You get C* = 11 C or 101 C. Measure the break 

frequency of the low-pass R*C* filter, as above. Here the damping capacitor (" 47 pF) should be 

placed in parallel to Ro. 
 

Figure 8.22    Capacitance multiplier 
R1 = 1 k$, R2 = 100 k$, C = 1 nF. These values give an equivalent capacitance is C* " 100 nF in 

series to Rp = R1 || R2 " 1 k$. Measure the break frequency of the low-pass R*C* (with 

R*=R+Rs). The transfer function of this filter is [(1+sRpC*)/(1+s{Rp+R*}C*)].

 

Figures 8.24 , 8.25     IC  Active filters  

Beging with  RF1 =10k!, RF2= k!, Ri =10k!,    RQ=1k!. (for fig. 8.25 : RF3 = RF4 = RF5 =10k!) 

Then observe the changes in G, Q and %0, by changing the starting values. 

 

Figure 9.1   Comparators 
Drive the OA with a sinusoidal oscillator, f " 1 kHz, 

Vpp " 5 V, as in Figure 16.7. Use the oscilloscope in 

X_Y mode to observe how changes the transfer 

function while varying the reference voltage VR. 

 

 
Figure 16.7 

 
Figure 16.6 
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Figure 9.2 e 9.3   Non-inverting and inverting comparator 
Drive the OA with a sinusoidal oscillator, 

f ≈ 1 kHz, Vpp ≈ 5 V, as in Figure 16.8. 

(R1 = R2 = R3 = 10 kΩ). observe how changes 

the transfer function while varying the 

reference voltage VR. Replace R1 with a 5 

kΩ pot and observe how changes the 

hysteresis with R1values. Connect Vi to the 

voltage divider (SW1) and measure the 

threshold voltage, for different values of VR 

and R1. Interchange VR and Vi (circuit of Figure 9.3) and repeat the measurements. 

 

Figure 9.4   Bipolar multivibrator 
C = 10 nF, R1 = R2 = 100 kΩ, R = 100 kΩ pot. Connect Vo to channel-1 and V1 to channel-2. 

Measure the square-wave period as a function of R. Swap R with R2 and measure the square-

wave period as a function of R2 (pot). 
 

Figure 9.5  
C = 10 ÷ 100 nF, R1 = R2 = 10 kΩ, Ro = 1 kΩ. R' = R" = 100 kΩ pots in series to 100 Ω. Generic 

diodes and 5.8V zener. Measure the period and pulse width as functions of R' and R". Measure 

amplitudes of V’o and Vo for various bias voltages (Vcc). 

 

Figure 9.6    Unipolar multivibrator 
C = 100 nF, R1 = R2 = 100 kΩ. R3 = R = 100 kΩ pot in series to 10 kΩ. ±Vcc = +15 V, 0 V. Connect 

Vo to channel-1 and V1 to channel-2 and measure the frequency as function of R and R3. Repeat 

with C = 10 nF. Swap R2 and R3 and measure the pulse width as function of R2 (pot). Repeat 

measurements with R2 and –Vcc connected to  –15V. 

 

Figure 10.2 and 10.3    Wien-bridge oscillator 
Figure 10.3a: R2 = R3 = 15 kΩ, C2 = C3 = 10 ÷ 100 nF, Ro =  200 Ω pot in series to 200 Ω. The 

value of Ro must be adjusted in order to stabilize the amplitude and minimize the sine wave 

distortion. Use filament lamp 12V-20 mA or da 24V-50 mA, (with resistance at 10 mA of about 

500 Ω and 250 Ω, respectively). If RL is the value at the working current, the  Ro value should be 

adjusted to about 2 RL. Figure 10.3b: The NTC thermistor may be 4.7 kΩ Philips (mod. 

232262721472), with R1 =  5 kΩ pot. 

 
Figure 16.8 
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Figure 10.4  
R = 20 kΩ pot, R1 = 20 kΩ, Ro = 47 kΩ, Rf = 10 kΩ. Adjust R for best stability and minimum 

distortion. 
 

Figure 10.5    Phase shifter 
Ro = 10 kΩ, C = 100 nF, R = 100 kΩ pot. Oscillator : 5Vpp (may be one of the Wien-bridge circuits 

previously tested). Use X-Y mode oscilloscope to evaluate the phase shift versus frequency, for 

both circuits 10.5a) and 10.5b), and for various R,C values. Note that amplitude does not depend 

on ω. 
 

Figure 10.7     Double phase shifter oscillator 
OA = TL084, Ro = R = 15 kΩ, Z1 = Z'1 = C = 100 nF, Z2 = Z'2 = 15 kΩ, R’o = 10 kΩ in series to a 10 

kΩ pot for amplitude adjustment. Stability is improved by adding two diodes and a small 

resistance (200 Ω). in parallel to the  R'o feedback resistor (as in Figure 10.4). Frequency may be 

changed by varying Z2 and Z'2. High frequency self-oscillations may be damped with a small 

capacitor (e.g. 22 pF), in parallel to R'o. 

 

Figure 10.8     Quadrature shifter 
R1 = R2 = 10 kΩ, C1 = C2 = 10 nF. The oscilloscope in X-Y mode will give an ellipse with 

orthogonal axes: changing frequency the π/2 phase shift will not change. 
 

Figure 10.9    Quadrature oscillator 
OA = TL082, R1 = R = 15 kΩ, R' = 10 kΩ in series to a 10 kΩ pot, C = C' = C1 = 10 nF. In parallel to 

C1 : 200 kΩ pot , in series to 200 kΩ in parallel to two diodes. Begin with R' slightly smaller than 

R to trigger oscillation, then adjust it to minimize distortion. 
 

Figure 10.10    Quadrature oscillator 
R = R' = 10 kΩ, C = C' = C" = 100 nF, Ro = 100 kΩ in series to a 20 kΩ pot, Rf = 10 kΩ.  Begin with 

maximum Ro value, then reduce it to  minimize distortion. 
 

Figure 10.11   Square/triangular wave generator 
OA = TL082, R1 = 1 kΩ, R2 = 3.3 kΩ, R = 10 kΩ, C = 100 nF. By replacing R with two different 

resistances each in series with a diode, (with different polarities) the integrator current is different 

for the rising and falling slopes in the triangular wave, so that the output comparator gives pulses 

with different width. 
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Figure 10.12   Square/triangular wave generator 
OA = TL082, R = 10 kΩ, R1 = 3.3 kΩ, R2 = 1 kΩ, RG = RF = 5 kΩ pots, C = 100 nF, 

RT = RQ =  symmetric voltage dividers with two 10 kΩ resistors in series to 1 kΩ pot, 6.9 V zener. 

Vcc= ± 15 V. Adjust the symmetry of triangular and square waves (RT and RQ values). Adjust the 

amplitude of VT (by trimming RG), then  restore the same frequency value by trimming RF. 
 

Figure 10.13  
OA = TL082, R = R2 = 10 kΩ, C = 10÷100 nF, R1 = 10 kΩ pot. Change amplitude (and therefore 

frequency) of VT by varying R1. Insert a resistor (≈ 1 kΩ) between the OA1 output and VQ 

output, and a twin zener between the output VQ and ground to stabilize the amplitude. 

 
Figure 10.14   Quadrature square/triangular wave generator 
OA = TL084, R = 10 kΩ, C = 10 nF. A four-channel oscilloscope may make easier to compare the 

four outputs. Try changing one R (or C), and observe the effect on the signals.  
 

Figure 10.15     Voltage to frequency converter 
OA = TL082, R = 100 kΩ, R1 = R2 = 10 kΩ, R3 = 1 kΩ, C = 1 nF (o 10 nF), D = 1N914, Vcc = ±15 V. 

Measure the frequency as a function of the (positive) input voltage. Reverse diode and use 

negative input voltage and observe the result.  
 

Figure 10.16    Frequency-to-voltage converter 
OA = TL082, R1 = 1 kΩ, twin Zener 6.9V, R = 1 MΩ, C = 1 nF, C1 = 1 µF, diodes 1N914. Measure 

the input voltage as a function of the input frequency. Evaluate the minimum frequency that 

warrants linearity. 

 

For lock-in, the input signal VS may be a 10-4 fraction taken from a cascaded voltage divider 

(Figure 16.3) biased by the reference sinusoidal signal VR;  basic tests are the following: 

1) Linearity: proportionality between d.c. output and a.c. input amplitude. 

2) Asynchronous signals rejection (by adding to VS a signal taken from another oscillator or a 

d.c. voltage)  

3) Phase response (using a phase shifter placed between VR and the input voltage divider) 

4) Evaluation of the useful frequency range, input amplitude range, quality factor.  
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To drive two analog switches in phase opposition, 

the circuit of Figure 16.9 may be used, where the 

potentiometer R trims the threshold voltage, in 

order to obtain symmetric square wave outputs 

(V+, V–) even if the reference voltage is affected 

by an offset voltage. The pull-up resistor (1 kΩ) is 

required only by open-collector comparators (as 

LM311/LF311 /µA710 /µA339). 

 

Figures 11.8, 11.9  and 11.10     Lock-in with multiplier ±1 
OA= TL084, Analog switch: CD4016 or equivalent. R1 = Ro = R = 10 kΩ, C = 1 µF, f ≈ 1 kHz. 

Observe the signal before and after the low-pass filter (try with different time constants, e.g. 

change C). Insert a phase shifter (Figure 10.5) into the VR channel and measure Vo as a function 

of the phase shift. Test the behaviour with different frequencies 
 
Figure 11.12      Synchronous filter 
R = Ro = 100 kΩ,  C = Co = 100 nF. Use a sinusoidal signal (some kHz) fed to VR and to VS ; add to 

VS another (higher and lower frequency) noise and verify the rejection of asynchronous signal at 

the output. Compare signals before and after the high-pass filter. The output amplifier may have 

high gain (G ≈ 10 ÷ 50).  
 
 
In the following exercises on logic circuits, the default power supply is: +5 V /ground, valid for 

both TTL and CMOS. You may use four 1.5 V batteries in series to a diode (V ≈ 5.4 V).  

To check the logic value of any point of the circuit, use a LED connected to +5V through a 1 kΩ 

resistor (or 330 Ω for more bright signal): the value is "low" when LED is ON; this reverse logic 

is justified by the small output current of TTL in "high" state (about 0.4 mA, versus minimum 

LED current of about 2 mA). This inconvenience may be avoided using CMOS type 74HCxx or 

74HC40xx. 
 
Figure 12.2 , 12.3 
Verify the De Morgam theorems using the truth tables (equivalence between NAND and OR with 

negated inputs, between  NOR and AND with negated inputs). 
 
Figure 12.5 
Setup EXCLUSIVE OR using the three equivalent circuits and verify the truth table. 
 
Figure 12.6 e 12.7 
Build NOT, AND, OR, NOR, EX-OR first with NAND gates, then with NOR gates.  

 
Figure 16.9 
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Figure 12.8 
Build 6-input NOR with 7405 (Hex-inverter, open-collector) and pull-up 2.2 kΩ resistor 

connected to the 6 outputs. 
 
Figure 12.9 e 12.10    RS Flip-Flop   
Use 470 Ω resistors, (and 100 nF capacitances in Figure 12.10). Inverters: 7404, NAND:7400, 

NOR:7402. With reference to the truth tables, verify the stable state [row 4 in a) and row 1 in b)], 

starting from rows 2 or 3 (the outputs do not toggle). Verify the disallowed state (outputs both 

"high" for row 1 in a) and both "low" for row 4 in b).  
 

Figure 12.11    Synchronous Flip-Flop   
As CLOCK signal use the output of a RS flip-flop (Figure 12.10), to avoid switch bounces90. 

Verify that this circuit, with CLOCK enabled, is equivalent to the RS Flip-Flop of Figure 12.10a. 

Verify that this device does not toggle when Clock is "low". Repeat the exercise using four NOR 

gates.  
 

Figure 12.12      Master-Slave flip-flop 
Use first 9 NAND gates (7400), then 9 NOR gates (7402). Write the truth table for the second 

circuit, and ascertain whether the data are transferred during rising or falling edge in the CLOCK 

input. Use 6 LED to test the state of R,S, and of the outputs of master and slave.  
 

Figure 12.13 Type-D flip-flop 
Use two 7400 (NAND) and one 7404 (inverters). Try also the equivalent made wit NOR gates 

(7402). You may also use one of the two type-D flip-flop of 4013 or 7474 91 
 

Figure 12.14     Divider-by-two 
Use 7474. Try several cascaded stages and test the signals at each output  
 

Figure 12.15    J-K flip-flop 
Use two 7400 for the master-slave flip-flop and another 7400 for the two AND gates: two NAND 

(half 7400) with shorted inputs (inverters) in series to the other two NAND (NANDs becomes 

ANDs). Test the behavior with both J and K "high", then with both "low". Verify the equivalence 

to a type-D flip-flop when J is connected to K through an inverter. Try using 7473 as J-K flip-

flop. 
 

———— 
90 See http://www.elexp.com/t_bounc.htm  or http://www.labbookpages.co.uk/electronics/debounce.html 
91  Datasheet: http://www.doctronics.co.uk/4013.htm - about and http://www.ti.com/lit/ds/symlink/sn74ls74a.pdf 
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Figure 12.16    Type-T flip-flop 
Use 7473 or 4027. Drive the CLOCK with a low frequency multivibrator and the TOGGLE input 

through a manual switch (between "low" and "high" levels). Obsserve the output at the 

oscilloscope. 
 

Figure 12.17 and 12.18    Monostables 
Use CMOS gates (4011, 4001): R =  10 kΩ pot in series to 1 kΩ, R1 = 100 kΩ, C = 10 ÷ 100 nF, 

C1 = 1 µF. Using TTL gates (7400, 7402), resistors R and R1 should be smaller than 470 Ω to 

avoid an output latch to "high", due to the current fed to ground.  
 

Figure 12.19 
Use 7403, 4011 NAND gates, R= 100 kΩ, C = 10 ÷ 100 nF, a manual switch to drive input 

between "low" and "high" levels. Check the circuit behavior when replacing NAND with NOR 

gates (7402, 4001).   
 

Figure 12.20, 22 and 23    Astables 
Using TTL gates (7414 for 12.20 and 7402, 7404, 7408 for 12.22 e 12.23):  R =  100 Ω pot in 

series to 100 Ω, C = 1 µF. Using CMOS gates (4584): R = 100 kΩ pot, C = 10 nF. Observe the 

output signal and the signal at the input of gate 1 while varying R.  
 

Figure 12.24 and 12.25 
Use 11 inverters, (or better 23 inverters) using four 74L04, or 7404, or 4069. Measure the 

frequency and the pulse width. Calculate the risetime of different gates as a function of  bias 

voltage (2 V < Vcc < 5 V), and of the room temperature (use a soldering iron to heat the gates). 
 

Figure 12.26     Delay generator 
Use  CMOS gates, and a square wave at the input (e.g. circuits of Figures 12.20 or 12.22), and 

choose a time constant RC smaller that the half-period of the square wave. Test several types of 

gate NAND, AND, OR, NOR (4011,4001,4071,4081).  
 

Figure 13.3   A 555 monostable 
Bias: +15 V, 0 V; R1 = R2 = 10kΩ, Cv = Ci = 10 nF, C = 100 nF, R = 10 kΩ in series to a 1 MΩ pot. 

Drive the input with a pulser as that shown in Figure 9.6. Compare signals Vi 

and VT, than Vi and Vc, then Vi and Vout, while varying R. 
 

Figure 13.4   Astable pulser 
Cv = C = 10 nF, R2 = 100 kΩ, R1 = 1 kΩ in series to a 100 kΩ pot. Observe the 

output signal while changing R1.  Replace R2 with the circuit shown here, with 
R

1kΩ
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R =100 kΩ pot, and observe how the pot-setting does change the duty cycle (ratio T2/T1) without 

affecting the frequency. Test the pulser with different bias: e.g. +15 V/ 0 V and ±5 V. 
 

Figure 13.5    Square wave generator 
R1 = 1 kΩ, R2 = 10 kΩ in series to a 100 kΩ pot Cv = C = 10 nF, RL =  10 kΩ pot. Observe the 

output signals 1 and 2, while changing the R2 value. Displace the load RL to the output 1 and see 

the change. 
 

Figure 13.6   Linear voltage-to-frequency converter 
OA = TL081, Timer = ICM7555. R = 100 kΩ, Ro = 10 kΩ, C = Co = 100 nF. (R* = 1 kΩ to protect 

the trigger input). Observe the signals VT and Vo while changing the voltage input. Try to change 

the values of τ and τo.  
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Appendix A 

A simplified explanation of the transistor working principle in linear region 

A complete analysis of the transistor reqires using complex models. Here we offer a very short 

description that allows understanding most part of  common circuits involving transistors. 

We only define, without explanation, the I-V characteristics for diode and transistor, and we use a 

reduced set of parameters (hfe and hie) restricting our analysis to small a.c. signals and low 

frequencies (for d.c. signals one must take into account the junction bias voltages). 

A.1. The diode 

A diode is a two-terminal non-linear device made of a junction between two semiconductors, one 

P-doped and one N-doped. Near the junction the majority92 carriers (holes in P-doped and 

electrons in N-doped) recombine, leaving a "depletion" layer 93 where there are no free charge 

carriers. The charges bound to the crystal lattice (positive ions in N-doped material and negative 

ions in P-doped material), are fixed, so the electric field, due to this double layer of opposite 

charge, limits the diffusion of the majority carriers (electrons frm N region and holes from P 

region). This electric fiels, however, does not block the flux of minority carriers thermally 

generated inside the depletion layer (eletcrons flowing from P to N and holes from N to P). This 

inverse current is nusually named Io. 

In equilibrium conditions (without external voltage applied to the diode) the inverse current is 

balanced by the forward current Id, due to the diffusion of majority carriers: I = Id + Io = 0.  

The forward current Id depends on the applied voltage V, on the absolute temperature T and on 

the type of semiconductor as follows: 

Id = C exp [qV/(nKBT )]  (A.1) 

where q is the elementary charge, KB  the Boltzman constant, and n a constant that is about 1 for 

germanium and about 2 for silicon. Letting KBT /q = Vt (at room temperature Vt ≈ 26 mV) we get 

I(V) = C e V/nV
t
 –  Io.   

The constant C is determined by the equilibrium condition: I(0) = 0 that gives C = Io, so that we 

may  write (A.1) as the  ideal diode equation: : 

I(V) = Io (e V/nV
t
 – 1). (A.2) 

———— 
92 For basic definitions of doped semiconductors, holes, majoriry and minority carriers, depletion layer,.... see for 

example: Elementary Semiconductor Physics, H.C. Wrigth, or The Physics of Semiconductor Devices, D.A. 
Fraser, or Introduction to Semiconductor Physics, R. Adler, A. Smith,  R. Longini, or Semiconductor Devices, 
S.M. Sze. 

93 The depletion layer thickness is of the order of µm.; see http://en.wikipedia.org/wiki/P–n_junction 
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For V >> Vt  the constant 1 in (A.2) may be neglected with respect to the exponential term:  

 I(V) ≈ Id = Io e V/nV
t
   ,    V >> Vt . (A.3) 

The slope of the characteristic curve  (Figure A 1a) is ∂I/∂V = I/(nVt) = (rd)–1, ove rd is named 

dynamic resistance of the forward biased diode, that increases linearly with T: at room 

temperature rd  ≈ 26 / I (Ω / mA). 

 
Figure A 1 

For V < 0 the exponential term becomes negligible, so that I(V < 0) ≈ – Io . 

The reverse current Io depends on the specific diode, and it is normally quite small, of the order of 

1 µA. We may conclude that the diode is essentially a rectifier: it may in fact be approximated as 

unidirectional switch. In Figure A1b the characteristic curve is approximated by a piecewise 

linear function (the dotted line defined by: I≈0 for V< VF , and I ≈ (V –VF )/rd , for V> VF), where 

for germanium diodes VF ≈ 0.6 V and for silicon diodes VF ≈ 0.2 V.  

More often, beside neglecting the reverse current, also the dynamical resistance is neglected, 

which leads to the ideal unidirectional switch model: when forward biased the diode is assumed 

to be  a voltage source VF,  when reverse biased it is assumed to be  an open switch (Figure A1b). 

This model is illustrated in Figure A 2 where the series of the diode and the resistor R (with 

R >> rd) is a rectifying voltage divider: the input a.c. signal Vi appears at the output without the 

negative half-wave (Vu). 

 
Figure A 2 

In the circuit of Figure A.3 the capacitor placed in parallel to the resistor, is charged during the 

positive half-wave through rd and discharged during the negative half-wave through R.  
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If R >> rd, the output signal is that shown by the full line (here the effect of VF is neglected). 

 
Figure A 3 

The amplitude ΔV of the ouput signal in stationary conditions, is name ripple, may be calculated 

as follows. Assuming a constant discharging current I = Vu/ R, if ΔT = 1/f is the signal period from 

the definition of capacitance (C = q/V) and of current (I = ∂q/∂t) we get ΔV = VΔT/RC, or 

ΔV/V = (f RC)–1 . 

A.2. The zener diode  

The current flowing across a reverse biased diode is normally very small, even considering the 

small leakage current due to the surface conductivity (increasing |-V|) that is added to the reverse 

current Io. However, when the reverse voltage reaches the breakdown voltage VB, whose value 

depends on the particular diode, a different process occurs: the avalanche conduction. The high 

electric field, within the depletion layer, gives to the electrons enough energy to generate, by 

collision, new charge-carrier pairs. This phenomenon leads eventually to the junction distruction, 

when the local power dissipation exceeds a limit value.  

Some diodes, named zener diodes, are specially manufactured to withstand high reverse voltages 

without damage.  

 
Figure A 4 

The characteristic curve of a zener diode, and the zener graphic symbols, are shown in Figure A4, 

where + – signs mark the reverse bias. 

The zener diode may be used as voltage stabilizer: for example Figure A 5 shows how the 

amplitude of the input signal ΔVi is reduced in the output ripple ΔVz . 
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Figure A 5 

In Figure A5 the axes Vz  and Iz directions are reverted, so that the reverse voltage and the current 

are positive. The load line is Vz = Vi – RIz . The slope of the load line does slightly change with 

the load resistance RL placed in parallel to the zener, (i.e with the total current I=Iz+Vz/RL 

flowing across R), but the change in Vz remains small, until Vi – RI > VB.  The maximum current 

IL that can be fed to the load is IL = Vz /RL < (Vi – Vz )/R + IZmin, where IZmin is the zener current at 

the voltage VB.   

A.3. The transistor : some definitions 

The transistor94 is a three-terminal device (collector, base and emitter) made of two p-n junctions 

in series , as shown in Figure A 6.  

 
Figure A 6 

When the two anodes are common we have a NPN transistor, when the two cathodes rae common 

———— 
94 See http://en.wikipedia.org/wiki/Transistor  and http://en.wikipedia.org/wiki/Bipolar_junction_transistor 
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we have a PNP transistor. The two junctions, however must be very close each other and 

interacting (we cannot get a transistor by simply joining two diodes!). The charge carriers 

injected into the depletion layer of the forward biased junction EB must diffuse into the depletion 

layer of the reverse biased junction BC: in other words the diffusion length of the charges 

injected into junction EB must be longer than the junction thickness95.  

We'll here analyze only the two most common configurations: the common-emitter (amplifier) 

and the common-collector (follower), in a.c. regime. We'll study the NPN transistor; for the PNP 

the analysis is similar, with reverses bias.  

A.4. Common emitter 

The transistor linear region96, also named active region, is a limited area in the Ic ,Vce plane, as 

shown in Figure A7, that gives an example of the characteristic curves Ic(Vce, Ib) of the collector 

current Ic versus the collector-emitter voltage Vce, for several values of the base current Ib. 

In the linear region  Ic  has a weak dependence on Vce, so that, for each Ib value, the Ic = Ic(Vce)  

curves may be approximated by horizontal segments.  

 
Figure A 7 

Therefore we may define a current-gain coefficient β = Ic/Ib, that does not depend on Ib (in a first 

approximation). A second parameter that characterizes the transistor is the ratio Rb =vbe/ib, which 

is the BE-junction effective resistance97. The current ib is the dynamic current injected into the 

base and vbe the base-emitter dynamic voltage98. The order of magnitude of Rb is 1 kΩ, and β 

varies for different transistors from 20 to 300. 

———— 
95 When both BE and BC are forward biased the transistor is in the saturation region, when both are reverse 

biased the transistor is in the cut-off region . 
96 The transistor linear region must not be confused with the OA linear region. 
97 In the four-parameter model of common-emitter configuration: β = hfe and Rb = hie. 
98 Dynamic current and dynamic voltage are defined in §A.5 
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The fact that # >> 1 may be explained by the following arguments (for NPN transistor). The BE 

junction is forward biased and therefore the majority charge carriers in the emitter (electrons) 

flow from E to B: most part of these electrons diffuse into the depletion layer of the BC junction 

that is reverse biased. This charge flux, modulated by the BE bias voltage, adds to the BC reverse 

current. Here also an avalanche current multiplication may occur, due to the high reverse bias, 

leading to an increase current gain.  

A more detailed treatment of this complex phenomenon may be found elsewere 99 . 

A.5 Dynamic regime 

Let us assume that the transistor in Figure A8a is biased within the linear region.   

 
Figure A 8 

In Figure A8.b the load line is defined as Vce = Vcc – RLIc. To each value of the input voltage Vi 

corresponds a different value for the base current Ib, i.e a different characteristic curve: the 

collector current Ic (Vi) is determined by the crossing between each curve with the load line. 

When the input voltage changes, the working point moves along the load line, thus changing the 

output voltage Vo=Vce. 

We define as dynamic voltages and dynamic currenst the changes of voltage and current, 

respectively, with respect to the values taken for a given position of the working point on the load 

line (quiescent point, or Q-point100). These variables will be written here in low-case vi = Vi – ViQ, 

vo = Vo – VoQ, ib = Ib – IbQ, ic = Ic – IcQ, etc. In this way we may neglect in our analysis the 

contribution of constant terms (as bias voltages or juntion voltage drops). 

The output dynamic voltage vo is obtained by differentiating the load line equation: 

vo = (Vce = ((Vcc – RLIc) = – RL (Ic = – RL ic. 

———— 
99 See http://en.wikipedia.org/wiki/Bipolar_junction_transistor and references therein 
100  See http://en.wikipedia.org/wiki/Q-point  or http://en.wikipedia.org/wiki/Biasing 
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From the definition of voltage gain AV =vo / vi  , and from vi = Rbib, we get: 

AV = – (RL ic ) / (Rb ib) = – βRL/Rb,  

The voltage gain AV depends on the transistor parameters β and Rb (which , in turn, depend on 

the temperature T). However it is possible to remove the gain dependance on β and Rb simply 

adding a resistor RE  in series to the emitter, as in Figure A9.  

In Figure A9a the voltage divider (R1,R2) sets the Q-point of the transistor, and the input voltage 

is applied through a capacitor, to avoid the effects of the input source on the transistor bias. If we 

assume this capacitor to be large enough, we may neglect its impedance101. Figure A9b shows the 

equivalent dynamic circuit and explicits the BE-junction effective resistance and the current 

controlled current source βib  

 
Figure A 9 

The input dynamic voltage vi may be written:  

vi =  Rb ib + Re iE  =  Rb ib  + RE (1 + β)ib  =  [Rb + RE (1 + β)]ib,  

So that the input impedance (neglecting the bias voltage divider and the capacitor) is:  

Zi  =  vi/ib  =  Rb + RE (1 + β). 

Because β >> 1 and Rb ≈ 1 kΩ, letting RE ≈ 1 kΩ we may neglect Rb with respect to (1 + β)RE.  

Therefore: Zi ≈ (1 + β)RE ≈ βRE, i.e. the input impedance is approximately β times the emitter 

resistance RE. 

The output dynamic voltage is vo = –RL ic  =  –β RL ib, and therefore the voltage gain is : 

AV =
Vu
Vi
= –

β RLib
Riib

= –β
RL
Ri
≈ – β
1+β

RL
RE

≈ –
RL
RE

 

which does not depend on the particular transistor used.  

Taking into account the voltage divider (R1,R2) the effective input impedance becomes: 

Zi  =  R1 || R2 || βRE  =  (1/R1 + 1/R2 + 1/βRE)–1, 
———— 
101 If we work at frequency  ω , must be C >> 1 / ω(R1 || R2) (see § 5 and Appendix B). 
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and, if the smaller resistance between R1 and R2  is of the order of RE,we get Zi  ≈ R1 || R2 . 

The output impedance Zo  is defined by the ratio vo {io = 0}/ io{vo = 0}, where vo {io = 0} = RLic, 

and io {vo = 0} = ic = βib. In conclusion: Zo= RLic/ ic = RL. 

In order to optimize the resistance values in the voltage divider R1,R2 we note that:  

1) to maximize the output voltage range we should choose the quiescent point at VoQ ≈  Vcc / 2; 

this defines the collector current IcQ ; 

2) the given IcQ defines the emitter voltage VeQ = REIcQ. To keep the transistor inside the active 

region must be VbQ > VeQ , i.e. VbQ > VeQ + Vbe ≈ VeQ + 0.6V; 

3) the values R1,R2 cannot be too high because we need to keep the base current negligible with 

respect to  the current flowing across the divider: Vcc / (R1 + R2) >> Ib. 

A.6. Common collector (Emitter Follower) 

In the common-collector configuration (Figure A 10), the output is taken at the transistor emitter, 

with the collector connected at the common voltage Vcc.  

 
Figure A 10 

Here the load line equation is Vce = Vcc – RE i e, and the dynamic ouput voltage (not loaded) is : 

vo = RE i e = RE (1 + β)]ib. 

The input dynamic voltage is vi = Rbib + RE i e = [Rb + RE (1 + β)]ib, so that the voltage gain is: 

AV =
vo
vi

=1/ 1+
Rb

(1+β)RE

⎛

⎝⎜
⎞

⎠⎟
. 

For (1 + β)RE >> Rb, we get102 AV ≈ 1, showing that the output voltage follows the input voltage 
103. 

The input impedance Zi is: 
———— 
102 For too small values RE < Rb/(1 + β), also the gain decreases:  AV ≈  [(1+β)RE/Rb] <1.  
103 Note that the d.c. level of the emitter voltage is Vb– Vbe ≈ Vb– 0.6 V. 
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Zi ≈ (1 + β)RE ≈ β RE, 
(or, accounting for the bias voltage divider)  Zi  ≈ R1 || R2 || βRE .  

Figure A10b shows that the output impedance Zo is the value that, applied as a load for the ideal 

voltage generator Eo = vo{RL = ∞}=viAV , halves the output voltage: i.e. vo{RL= Zo}=Eo/2 .  This 

last equation may be written as: 

 vo{RL = Zo}=
vi

1+ Rb / [ 1+β( ) Zo || RE( )] = Eo / 2 =
vi

1+ Rb / [ 1+β( )RE]
   

With some algebra we get Zo = RE || [Rb / (1+β)] << RE.  

As a conclusion: Zo/Zi  ≈ Rb/RE β2<<1 . The common collector behaves as a current amplifier.   

A.7. Field Effect Transistor (FET) 

The transistor described in §A.3– §A.6 is the Bipolar Junction Transistor (BJT), where the 

collector and emitter currents are controlled by the base current (current-controlled device). 

Other transistors are instead voltage-controlled devices, e.g. the Field Effect Transistors (FET), 

where the emitter and collector contacts are named source and drain, respectively, and the base is 

replaced by the gate (Figure A11).  

The current flowing in the channel, that connects the source to the drain, cis controlled by the 

gate voltage, and the leakage current trough the gate is generally negligible (of the order of nA). 

 

Figure A 11 
 

FET transistors may be classified in two classes: the Junction Field Effect Transistor (JFET) 

where the control voltage is applied through a reverse biased junction, and the Metal-Oxide-

Semiconductor FET (MOSFET) where the control voltage is applied through an insulating layer.  

Within each class we distinguish between n-type channel (n-JFET, n-MOSFET), and p-type 

channel (p-JFET, p-MOSFET). The integrated circuits made of MOSFET are named 

Complementary-MOSFET  (CMOS). 
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Drain and source terminals are almost equivalent, however the source is normally marked as S or 

it is drawn closer to gate, in the graphic symbols.  

Figure A 12 shows the MOSFET structure and symbols. The working principle for both types is 

based on the change of channel cross-section induced by the voltage applied to the gate with 

respect to the substrate.   

 
Figure A 12 

In JFET the voltage applied to the gate must never forward bias the gate-channel junction, while 

in MOSFET the applied voltage is limited only to values that do not produce damage to the thin 

insulation layer: for example electrostatic charge build-up may destroy the device. 

In JFET with grounded source the gate voltage increases the channel current when it approaces 

the drain voltage gate: ∂I/∂VGS is positive for n-JFET and negative for p-JFET. 

Therefore an n-JFET resembles a npn BJT, and p-JFET resembles a pnp BJT. The input 

impedance of JFET is much higher than for BJT, of the order of 1010 ÷ 1014 Ω. 

MOSFET may be of different types: depletion mode (channel conducting with VGS = 0), or 

enhancement mode (channel off with VGS = 0). In the first case the channel is doped with the 

same sign as drain and source, but with weaker doping; in the secon case the channel is generated 

by the bias that produces an inversion layer close to the gate, and the conduction begins at a 

threshold value VGS = VT
104. 

———— 
104 For details  http://en.wikipedia.org/wiki/MOSFET  or Microelectronics, J. Millman et al.  
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Appendix B 

B.1. Complex numbers 

A complex number105 can be viewed as a point or position vector in a two-dimensional Cartesian 

coordinate system called the complex plane. We name imaginary the axis y, and we name real 

the axis x. We may associate to every point (a, b) of the plane the vector that projects the origin 

(0,0) into (a,b). This vector represents the complex number C = a + jb. The symbol j is the 

imaginary unit (j = 1  and j2 = –1). Let m be the vector length: it is the modulus of the associated 

complex number C:  m = |C| = 
22 ba + . 

The angle ϕ between the vector and the x axis is the 

phase of the complex number: ϕ = arctan (b / a), and we 

may write C = m (cos ϕ + j sin ϕ). 

The real part of C is a = m cos ϕ = Re(C) , and the 

imaginary part of C is b = m sin ϕ = Im(C).  

From the Euler formula106:  

exp(jϕ) = cos ϕ + j sin ϕ,  

we get C = m ejϕ. The complex conjugate of C is the number C  (or C*) with the same real part 

and imaginary part with opposite sign: C* = a – jb = m  e–jϕ.  

The sum of two complex numbers is: 

C3 = C1 + C2 = (a1 + jb1) + (a2 + jb2) = (a1 + a2) + j(b1 + b2) = a3 + jb3,  

with a3 = a1 + a2  and b3 = b1 + b2. 

The product of two complex numbers is:  

C3 = C1 × C2 = (m1 ejϕ1) × (m2 ejϕ2) = m1 m2  ej(ϕ1 + ϕ2) = m3 ejϕ3, 

with m3 = m1 m2  and  ϕ3 = ϕ1 + ϕ2.  

The quotient of two complex numbers is:  

C3 = C1 / C2 = (m1 / m2)ej(ϕ1 - ϕ2). 

B.2. Sinusoidal voltages and currents in complex notation 

Let us consider a sinusoidal current signal: i(t) = Io cos ωt, where ω = 2πν is the angular frequency 

———— 
105  See http://en.wikipedia.org/wiki/Complex_number 
106  See http://en.wikipedia.org/wiki/Euler%27s_identity 
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and ν is the frequency. We associate i(t) to the complex number I = Io(cosωt + j sinωt) , or, in the 

polar form  I =Ioexp (jωt).  

Frequently the notation is simplified by using the complex variable s = σ+jω (with σ and ω real) , 

and letting I(s) = Ioest. For voltages we similarly let V(s) = Voest. Note that this notation, assumed 

for sinusoidal signals, is fully general, because any signal may be represented by a (finite or 

infinite) series of sinusoidal componebts (Fourier representation107). 

B.3. Complex impedance108  

Resistors, capacitors and inductors are linear elements that associate the current i(t) to the voltage 

drop v(t) across them (where t is the time variable).  

The relation v(t) = {Z}i(t) defines the impedance {Z} operator that transforms the current i(t) into 

the voltage v(t). For a resistor the impedance is a real constant  

v(t) = R i(t) → {ZR} = {R}. 

For a capacitor, from the capacitance definition C = q/v and the current definition i = ∂q/∂t, we get 

i(t) = C ∂q(t)/∂t , or by integration:  

v(t) = (1/C) i(t)dt∫  →  {ZC} = {(1/C) dt∫ }. 

For an inductor the voltage induced by the magnetic flux variation due to current changes is:  

v(t) = L∂i(t)/∂t → {ZL} = {L∂/∂t}. 
In the simplified complex notation the corresponding transformations are: 

{ZR}I(s) = R I(s) → {ZR} = R 

{ZC}I(s) = (Io/C)[ est dt∫ ] = (1/sC) I(s) → {ZC} = 1/sC = 1/jωC 

{ZL}I(s) = (IoL)[∂est/∂t] = (sL) I(s) → {ZL} = sL = jωL 

remembering that    

� 

estdt∫  = est / s   and  ∂(est) / ∂t = s est.  

Therefore the voltage drop across a resistor, a capacitor or an inductor may be written as: 

VR(s) = R I(s) 
VC(s) = (1/sC) I(s) 
VL(s) = (sL) I(s) 

The same results are obtained by using the trigonometric notation: I(ωt) = Io(cosωt + j sinωt), 

remembering cos(x)∫ dx = sin(x), sin(x)∫  = –cos(x), ∂cos(x)/∂x = –sin(x), ∂sin(x)/∂x = cos(x), and 

j2 = –1 . 

———— 
107  See http://cnyack.homestead.com/files/afourse/fsdef.htm 
108  See http://en.wikipedia.org/wiki/Electrical_impedance 



150   

 

B.4.  Complex transfer function  

Any linear network may be seen as a quadrupole, defined by the complex transfer function 

T(s) = A(ω) ejφ(ω) (with modulus A and phase φ), that transforms the input complex signal Vi(s) 

into the output complex signal Vu(s) = T(s) Vi(s). 

In a linear network the transfer function may be always written as ratio between two polynomes: 

T(s) = N(s)/D(s). The roots (z1, z2, …) of the numerator N(s), i.e. the solutions of the equation 

N(s) = 0, are named zeros (for s = zi , T =0), and the roots (p1, p2, …) of D(s) are named poles (for 

s = pi , T diverges).     

Therefore we may always write: 

T(s) = G (s − z1)(s − z2 )(s − z3)...
(s − p1)(s − p2 )(s − p3)...  

Poles of a transfer function and stability criteria. 

If the real part of all poles is negative, then the overall system is stable. If one pole has a zero 

real part, then that component is critically stable. If one pole has a positive real part, then that 

component leads the overall system to instability. If the imaginary part of a pole is zero, then that 

component does not have any oscillatory contribution. If the imaginary part is not zero then its 

value is the frequency of oscillation of the corresponding component of the system. The zeros of 

a transfer function do not affect the stability, they affect the transient response of the system. 

B.5. Bode diagrams of a transfer function 

The Bode diagrams of a transfer function are piecewise linear approximations of the curves A(ω) 

and φ(ω) in bi-logarithmic and semi-logarithmic plots, respectively.  

Let us consider two simple examples in sinusoidal regime.  

1) Low-pass L-C filter (Figure B2). We have Vu(s) = R I(s) and Vi(s) = (R + ZL) I(s) so that the 

transfer function is: T(s) = Vu(s)/Vi(s) = R/(R + ZL) = 1/(1 + jωL/R) = 1/(1 + jω/ωo). Therefore 

A(ω) = (1 + ω2/  

� 

ω0
2)-1/2, and  φ(ω) = – arctan(ω/ωo). The piecewise linear approximation may be 

performed in two frequency regions: for ω << ωo , where ωo = R/L is the break frequency , we 

may approximate A=1, and φ=0,  at ω = ωo A = –log√2 ≈ 0, and φ = –π/4, while for ω >> ωo we 

may approximate  A= ωo/ω, and φ= –π/2.  

Therefore the Bode plot of A(ω) is made by the straight line y = log |T| = 0 and by the straight 

line y = log |T| = log (R/L) – log ω, while Bode plot of φ(ω) is made by the two horizontal lines  
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φ = 0 and φ = –π/2, joined by the segment passing through the point (ωo,–π/4), with a 

slope -45ο /decade, in fact φ(ωo/10) = -arctan(0.1)  ≈ 0, and φ(10ωo) = –arctan(10)  ≈ -90o. 

 
Figure B.2 

2) High-pass RL filter (Figure B3). Here Vu(s) = ZL I(s)  and Vi(s) = (ZL + R) I(s) so that the 

transfer function is T(s) = sL/(R + sL)  = 1/(1+j ωo/ω). Therefore A(ω) = (1 +   

� 

ω0
2/ω2)-1/2, and 

φ(ω) = arctan(ωo/ω). For ω << ωo = R/L we may approximate A= ω/ωo, and φ= +π/2,  at ω = ωo 

A = –log√2 ≈ 0, and φ = +π/4, while for ω >> ωo may approximate A= 1, and φ=0. Therefore the 

bode diagram for A(ω) is made by the straight line y = log |T| = log (R/L) + log ω at low 

frequencies and by the  straight line y = log |T| = 0 at high frequencies. The phase Bode 

diagram is made by the two horizontal lines (φ = +π/2 and φ = 0), joined by the segment 

passing through the point (ωo,+π/4), with a slope of –45ο/decade. 

 
Figure B.3 

B.6. Laplace Transform 

Last century, before the advent of electronic calculators, people used the slide rule (also known as 

slipstick) to easier perform multiplications and divisions. The trick was to make a logarithmic 

numerical transformation , then to use sum and subtraction, then  to make the inverse (anti-

logarithmic) numerical  trasformation . A similar technique may be applied to functions, instead 

of numbers, using Fourier or Laplace transformations109. 

 The Laplace transform L, is applied to a real function f(t), using the following definition: 

F(s) = L[f(t)] = ∫
∞

−

o

st dt)]t(fe[ , 

where s is a complex variable and t is a real variable (time). 

———— 
109 See http://cnyack.homestead.com/files/idxpages.htm and  http://en.wikipedia.org/wiki/Laplace_transform and  

http://www.stanford.edu/~boyd/ee102/laplace.pdf 
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It may be proven  110 that (if f(t) = 0 for t < 0) the following relations hold: 

 L [f1(t) + f2(t)]  =  L [f1(t)] + L[f1(t)]  =  F1(s) + F2(s) 

 L [af(t)]  =  a L [f(t)]  =  a F(s) 

 L [f(t– to)]  =  e-sto L [f(t)]  =  e-sto F(s) 

 L [∂f(t)/∂t]  =  s L[f(t)] – f(0)   =  s F(s) – f(0) 

 L [
    

� 

f(x)dx
o

t
∫ ]  =  

s
1L [f(t)]  =  F(s) / s 

 f(∞)  =  
0s

lim
→

{sL[f(t)]}  =  
0s

lim
→

{sF(s)} 

 f(0)  =  )]}t(f[sL{lim
s ∞→

  = )}s(sF{lim
s ∞→

 

Moreover if u(t) is the unitary step function,  defined by: u(t) = 0 for t < 0 and u(t) = 1 for t > 0:  

 L [u(t)]  =  1 e-st( )dt
o

∞

∫   =  1/s 

and for the exponential function : 

 L [exp(at)]  =  e(a−s)t dt
o

∞

∫   =  1/(s–a). 

From the Euler relation we get also: 

 L[sin(at)]  =  1
2 j

1
s− ja

−
1

s+ ja
"

#
$

%

&
'   =  a/(s2 + a2) 

 L[cos(at)]  =  1
2

1
s− ja

+
1

s+ ja
"

#
$

%

&
'   =  s/(s2 + a2). 

To show how to use the Laplace transform in electronics we analyze some simple examples. Let 

us first consider the response of an RC high-pass to an input step function.  

 
Figure B.4 

With reference to Figure B4a and from the definition of current i(t) = ∂q/∂t and capacitance 

C = q(t)/v(t), we obtain the equation:  

———— 
110 A short treatment may be found in Electronics for the Physicist, C.G. Delaney, chapt 12.  

v (t)o
v (t)i
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i(t)
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 vi(t) = vC(t) + vR(t) = (1/C)  

� 

i(t)dt∫  + Ri(t). [b1] 

With the Laplace transformation we get the complex equation, for generic functions v(t) and i(t) : 

 Vi(s) = (1/sC) I(s) + RI(s) = (R + 1/sC)I(s). [b2] 

On the other hand the output voltage may be written: 

 vo(t) = R i(t) = R {L-1[I(s)]} = L-1 Vi(s)
sRC
1+ sRC

!

"
#

$

%
& . [b3] 

where L-1 is the Laplace inverse-transform. The output voltage may be written also: 

 vo(t) = L-1 [L{vi(t)} T(s)]. [b4] 

For an input step function with amplitude V , we get  Vi(s) = L [V⋅u(t)] = V/s, and remembering 

that L-1 [1/(s + a)] = exp(–at), relation [b3] becomes: 

 vo(t) = L-1[V/(s + 1/RC)] = V exp(–t/RC). [b5] 

The same result may be obtained from [b4] that is a general relation.  

Using this shortcut we analyze the case of the low-pass filter of Figure B4b, whose trasfre 

function is T(s) = (1/RC)/(s + 1/RC), again using the step function for the input signal Vi(s) = V/s. 

From [b4] we obtain immediately: 

 vo(t) = L-1 1/ RC
s+1/ RC

×
V
s

"

#
$

%

&
'  = V L-1 1

s
−

1
s+1/ RC

"

#
$

%

&
'  = V(1– e –t/RC). [b6] 

We may fastly solve even much more intricate cases by using a Laplace transform collection for 

many functions, and the corresponding inverse transform,.  

In conclusion, using Laplace transforms reduces differential equations down to algebra problems, 

and simplifies the qualitative prediction of the effects of complex transfer functions.  

A very short list111 of the functions most commonly used in electronics, with the corresponding 

Laplace transform, is given in Figure B.5. 

 

———— 
111 An extended list may be found in http://tutorial.math.lamar.edu/Classes/DE/Laplace_Table.aspx; see also  

http://en.wikipedia.org/wiki/Laplace_transform 
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Appendix C 

C.1.  Resistors112  

Resistors are components that dissipate energy: the dissipated power P (by Joule effect) is 

P=RI2=V2/R=VI [watt]. Resistors are commercially available with values in the range from 10 

mΩ to 1000 GΩ (i.e. from 10–2 Ω a 10+12 Ω), and different types may dissipate, without excessive 

self-heating, power in the range from 1/8 watt to hundreds watt. We may distinguish six main 

types: carbon-resistors, carbon-film, metal-film, metaloxide-film, wire-wound and foil resistors. 

In carbon-resistors the resistive element is made from a mixture of finely ground (powdered) 

carbon and an insulating material (usually ceramic). A resin holds the mixture together. The 

resistance is determined by the ratio of the fill material (the powdered ceramic) to the carbon. 

They are available in different sizes that can dissipate power from 0.125 W up to 5 W, and in 

different types, with tolerances of 3%, 5%, 10% and 20%, with values from 1 Ω to 10 MΩ. They 

have high temperature coefficient (–0.1%/K) and high electrical noise.  

In carbon film-resistors the carbon is deposited on an insulating substrate, and a helix cut in it to 

create a long, narrow resistive path, with usually high value (from 10 Ω to 100 MΩ), good 

tolerances (0.5%) and lower electrical noise with respect to the normal carbon-resistors.  

Wirewound resistors are commonly made by winding a metal wire, usually nichrome, around a 

ceramic, plastic, or fiberglass core. They are available with values from 1 Ω to 100 kΩ, and 

tolerances of 1% or better; power dissipated is usually in the range 0.25W-1W (high power 

models can dissipate up to 200W). General purpose types have high inductance (therefore not 

suitable for high-frequency applications), but types with anti-inductive winding are also available 

(at higher cost). The temperature coefficient is normally low (5ppm/K). 

Metal film resistors are usually coated with nickel chromium : the resistance value is determined 

by cutting a helix through the coating rather than by etching. The coating may also be ceramic 

(cermet) conductors such as (TaN, RuO2, PbO,  Bi2Ru2O7, NiCr, or Bi2Ir2O7 . Thick film resistors 

are manufactured using screen and stencil printing processes. Thin film resistors (igher quality, 

more expensive) are made by sputtering (vacuum deposition) the resistive material onto an 

insulating substrate; the film is then etched in a similar manner to the old (subtractive) process for 

making printed circuit boards. They are available in values from 1 Ω to 1000 MΩ, with sizes from 

0.25 W to 1 W, with a reasonable tolerance (0.1%, 0.2%, 0.5%, 1%, or 2%) and a temperature 

coefficient that is generally between 5 and 100 ppm/K; good noise characteristics and low non-

linearity due to a low voltage coefficient.  

———— 
112  See http://en.wikipedia.org/wiki/Resistor 
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Metal-oxide film resistors. are made of metal oxides such as tin oxide. This results in a higher 

operating temperature and greater stability/reliability than metal film resistors.  

For film or carbon resistors a standard color code is used:  the first band indicates the first digit of 

the ohmic value, the second band gives the second digit, the third band gives the exponent in the 

power of ten multiplier (see Figure C1). 

 
Figure C.1 

In Figure C2 the correspondence between colors and digits is shown, as well as the sequence of 

standard ohmic values commercially available: resistors with 20% tolerance have only the values 

shown in bold, resistors with 5% tolerance have also values shown in italic.  

 
Figure C.2 

Metal-film resistors with tolerance 0.5 % and 1%, use a four digit numerical code: the first 3 

digits give the value, the fourth gives the mutiplier (power of ten). E.g. 1353 means 135×103 Ω. 

For small values the letter R indicates the decimal (e.g. 10R0 =10.0 Ω; 1R0 = 1.0Ω; R10 = 0.1Ω).  

All resistors have a parasitic capacitance Cp in parallel and some inductance in series Ls (usually 

negligible below few MHz); the actual impedance of a resistor is therefore Z = R/(1 + jωR Cp).  

High value resistors (from 109 to 1012 Ω) may not be negligible the surface conductivity due to 

humidity or contaminants (proper degrasing and hydrophobic surface treatment may help)  
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C.2. Potentiometers 

The potentiometer113 (pot, in electronics slang) is a three 

terminal component : two end-terminals, and a sweeping 

contact (wiper) in between. It may be used as voltage divider. 

By shorting the wiper to one end terminal we get a rheostat 

(a variable resistor, mechanically adjusted) as shown in 

Figure C3.   

Most potentiometers have cylindrical geometry with a 

rotating shaft (6 mm dia) that moves the sweeping contact. In some models the rotating shaft is 

replaced by a linearly moving wiper, and miniature-size potentiometers (usually panel-mounted 

or soldered onto printed circuits), named trimmers, may be adjusted by a small screwdriver (see 

Figure C.4). 

 
Figure C.4 

The resistive path may be carbon-film (cheapest , from 5 $ to 1 M$), conductive plastic or metal 

wire (most expensive from 10 $ to 500 k$. Wire-wound potentiometers may be multi-turn 

(helipot, with 4, 10, 15, 20 or 25 turns) . 

C.3. Capacitors 

Capacitors114 are available in a large variety of shapes and types. The specifications for a 

capacitor usually include the value of capacitance C, the voltage rating (i.e. the maximum voltage 

which can be continuously applied), the temperature coefficient, the leakage current Ip (or leakage 

resistance Rp), the dissipation factor DF. 

The capacitance is expressed by the relation C=K,? A/d, where A and d are the electrode’s area 

and separation, ,?  the permittivity of free space and K the relative permittivity (or dielectric 

constant) of the material separating the electrodes. Therefore large C values imply large A (i.e. 

———— 
113  See http://en.wikipedia.org/wiki/Potentiometer 
114 See http://freecircuits.org/2012/01/capacitors-basics-working/ 

 
Figure C.3 
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large dimensions) and small d (i.e. maximum voltage limited by dielectric breakdown).  

 
Figure C.5 

The leakage resistance Rp is the ratio between the applied voltage and the leakage current Ip: it is 

the effective resistance in parallel to the capacitor, and it is normally proportional to 1/C (for a 

given K the product RpC is constant, and measured in seconds or M$/#F).  

The complex impedance of a real capacitor may therefore be written as Zc = Rp/(1 + j% RpC).  

A capacitor has also a series resistance Rs, and a series inductance Ls, usually negligible (Rs < 1 

$, but sometimes much larger).  

The dissipation factor115 DF, measured in sinusoidal regime, is the ratio between the energy 

dissipated and the energy stored within one cycle (DF = 1/Q, where Q is the quality factor) and it 

is nearly constant in a wide range of frequency f : DF = (P /f)/(CV2/2), which means that 

dissipation increases linearly with frequency: P = DF (C V2/2) f. 

A related parameter is the loss tangent 8 is defined as tan8 = DF is the ratio between real and 

imaginary parts tof the capacitor impedance. Ideal capacitor have 8 =0  (Rp = %).  

Capacitors may be made made of two conducting films, separated by an insulating film, spirally 

wound into a compact cylinder, or by a ceramic disc with two metal plates on opposite surfaces. 

The symbols used for  capacitors distinguish normal, elecrolutic and tunable (Figure C.6) 

Different models are distinguished by the type of 

insulating spacer: air, ceramic, mica, polystyrene, 

polyester (PET, mylar), polymide (Kapton), polycarbonate 

(KC), polypropylene, PTFE (Teflon), aluminum oxide, 

tantalum oxide, oil, paper, glass116. 

Air-gap capacitors have a low dielectric loss. Used mainly for large-valued, tunable capacitors 

that can be used for resonating HF antennas . 

Ceramic  and mica capacitors (due to the low K value) have small capacitance but also small DF; 

they are useful in high frequency circuitry. They are marked by a color-code similar to that for 

resistors, with some differences (Figure C.7). 

———— 
115  See http://en.wikipedia.org/wiki/Dissipation_factor 
116  See http://en.wikipedia.org/wiki/Types_of_capacitor 
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Figure C.6 
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Figure C.7 

Among plastic-film capacitors the polyester-type (mylar: K = 3.1, DF ≈ 0.3) have high voltage 

rating, the polystyrene-type (K = 2.5) have small voltage rating but very small dissipation 

(DF ≈ 0.03); the polycarbonate-type (K = 2.8) have small temperature dependence (TC ≈ +300 

ppm./K) more details are shown in Table C.1. 

 
Figure C.8 

Electrolytic capacitors (Figure C.8) require the application of a DC bias voltage in order to work 

properly. This voltage must be applied with the correct polarity (invariably this is clearly marked 

on the case of the capacitor) with a positive (+) sign or negative (–) sign or a coloured stripe or 

other marking. Failure to observe the correct polarity can result in over-heating, leakage, and 

even a risk of explosion. They have high capacitance/volume ratio, but high leakage. There are 

also non-polar types made by two capacitors in series  with reversed polarity. May be made of 

aluminum-oxide or tantalum-oxide (more reliable but more expensive). The value of capacitance 

is written in µF units, even if sometimes the letter µ is replaced by "m", and also the maximum 

voltage is marked. Also some paper capacitors (not polar) have a mark indicating the external foil 

that should be grounded to minimize the pick-up noise. 

Some properties of variour capacitors are listed in Table C.1 [the units are Farad (F), with sub-

units : p= pico = 10-12, n= nano = 10-9, µ= micro = 10-6] 
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Type

 
Values  V max 

(V) 
Temp.coeff.  Leakage  

resistance 
Comments

 

mica/glass 1pF-10nF 100-600 very good good hf, expensive 
ceramic 10pF-100nF 50-3000 fair fair hf, cheap, small 

Polymide (Kapton) 1nF-10#F 10 kV fair good up to 250°C 
polystyrene 10pF-1#F 100-300 good (negative) excellent for filters 

polycarbonate 100pF-30#F 50-800 very good good large size, 
polypropylene 100pF-50#F 50-300 good excellent low  DF 

polyester (Mylar) 1nF-2#F 10 kV fair good up to 125°C 
teflon (PTFE) 1nF-2#F 200 good best up to 250°C 

tantalium 100nF-1000#F 6-100 fair  small size 
aluminum 100nF-0.001F 3-600 bad bad high C, cheap 

oil 0.1 #F-20#F –>10.000 faif good large size 
Table C.1 

C.4. Inductors 

An inductor117 is usually constructed as a coil of 

conducting material, typically copper wire, 

wrapped around a core either of air or of 

ferromagnetic or ferrimagnetic material. Cores 

with a higher permeability increase the magnetic 

field and confine it closely to the inductor, thereby 

increasing the inductance. Low frequency 

inductors are constructed like transformers, with 

cores of electrical steel laminated to prevent eddy currents. Ferrites (ceramics filled by iron 

oxide) are widely used for cores above audio frequencies, since they do not cause the large 

energy losses at high frequencies that ordinary iron alloys do. Inductors come in many shapes. 

Some inductors have an adjustable core, which enables changing of the inductance.  

Inductors have always a parasitic resistance Rp in series and a parasitic capacitance in parallel 

(usually negligible), so that the inductor impedance may be written: ZL " Rp + j%L.  

It is measured in Henry: commercially available values for air-core inductors are in the range 

from 0.01#H to some millihenry (mH), while ferrite-core inductors may have values from 1 #H 

up to several henry (with Rp " 100$). 

 

———— 
117  See http://en.wikipedia.org/wiki/Inductor 

 
Figure C.9
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C.5. Diodes  

Usually diodes are marked by a line on the cathode side (N). There are several different types: 

signal diodes (low power <1W) with small reverse current (of the order of µA, some below 1 

nA), rectifying diodes for large forward currents (up to 100 A) with larger reverse currents ( some 

mA). The fast rectifiers (switching diodes) have short recovery time (for emptying the junction 

depletion layer): 1N4148, 1N4150, 1N4151, 1N4448, 1N914,1N916 have reverse current smaller 

than 0.1µA;. Schottky diodes (e.g. BAR10, BATxx, HSCH1001, 1N5712, 1SS108) are 

constructed from a metal to semiconductor contact. They have a lower forward voltage drop than 

p–n junction diodes,  in the range 0.15 V to 0.45 V, and they have a faster reverse recovery than 

p–n junction diodes, they are recommended for small signals, high frequency.  

 

Figure C.10 

Table C.2 lists some common diode characteristics: VB = maximum reverse voltage (breakdown 

voltage), Io = reverse current (or leakage current), VF = forward voltage drop Id = forward current, 

C = parasitic capacitance. 

 
Name VB  

(V) 
Io  

(µA) 
VF  
(V) 

Id  
(mA) 

C 
(pF) 

Comments 

FJT1100 30 .001 1.1 .05 1.2 low Io 

1N3595 150 3 0.7 10 8 (fast) low Io 

1N914 75 5 .75 10 4 signal (fast) 
1N4148 75 5 .75 10 4 signal (fast) 
1N456/9 30/200 0.025 1 40/3  (fast) low Io 

1N6263 60 10 .4 1 1 (fast) low Vf  
1N3062 75 50 1 20 .6 (fast) low C 
1N4002 100 50 .9 1000 15 rectifier  1A 
1N4007 1000 50 .9 1000 10 rectifier  1A 
1N5625 400 50 1.1 5000 45 rectifier  5A 

1N1183A 50 1000 1.1 40000  rectifier  100A peak 

Table C.2 

Zener diodes may have breakdown voltages Vz in the range from 250 mV to 1.5 kV.  

The series Semtech BZV85CxxVx gives many Vz values (Vz = 2.7, 4.7, 5.1, 5.6, 6.8, 7.5, 8.2, 8.1, 
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10, 11, 12 ...) up to 200 V. Their name xxVx stays for the Vz value in volt, where V is the decimal 

point. The minimum reverse current Iz increases with decreasing Vz. For small Iz (0.05 mA) the 

Texas series 1N4678÷1N4700 goes from Vz = 1.8 V up to 25 V: the value increases with the 

number: 1N4679 = 2.0 V, 1N4680 = 2.2 V etc.  

A better temperature stability is achieved by bandgap zeners as the series LM103XX, or LM199, 

LM329, LM113, AD589... (see also § 13.2). 

In the Light Emitting Diodes (LED) the cathode is marked by the flat side of the cap, or by a 

stripe in metal can, or by the shorter lead (Figure C.10). 

Rectifying diodes may be available pre-assembled into Graetz bridge rectifiers (Figure C.11) 

 
Figure C.11 

C.6. Solderless breadboard  

In order to test an electronic circuit without using soldered junctions we may use a solderless 

breadboard, that  does not require soldering, and  is reusable. Moreover it makes easier changing 

the circuits or replacing components without risks of overheating.   

A modern solderless breadboard consists of a perforated block of plastic with numerous tin plated 

phosphor bronze or nickel silver alloy spring clips under the perforations. The clips are often 

called tie points or contact points.  

The spacing between the clips (lead pitch) is typically 2.54 mm. Integrated circuits (ICs) in dual 

in-line packages (DIPs) can be inserted to straddle the centerline of the block. Interconnecting 

wires and the leads of discrete components can be inserted into the remaining free holes to 

complete the circuit. Typically the spring clips are rated for 1 ampere at 5 volts and 0.3 amperes 

at 15 volts (5 watts). 

The layout of a typical solderless breadboard is made up from two types of areas, called Terminal 

strips and Bus strips. Terminal strips are the main areas, to hold most of the electronic 

components. In the middle of a terminal strip of a breadboard, one finds a notch running in 

parallel to the long side that marks the centerline and provides airflow (cooling) to DIP ICs 

straddling the centerline.. The clips on the right and left of the notch are each connected in a radial 

way; typically five clips in a row on each side of the notch are electrically connected. 
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Bus strips provide power to the electronic components. A bus strip usually contains two columns: 

one for ground and one for a supply voltage. Bus strips typically run down both sides of a 

terminal strip.  

 
      Figure C.12 
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 Appendix  D 

 Commercial IC: characteristics and pin-out 

 

 

 

D.1.  Short list of linear IC manufacturers 

 

The first characters of the name in a device give information about the manufacturer.  

 

Manufacturer Initials 

Analog Devices Inc. AD 

Burr-Brown OPA-(none) 

Fairchild Semiconductors µA 

Harris Semiconductors HA-(CA) 

Intersil Inc. ICL-ICM-FLT 

Linear Technology LT 

Maxim MAX-(BB-ICL) 

Motorola Semiconductors MC-(LF-LM-TL) 

National Semiconductors Corp. LF-LH-LM 

Precision Monolitics Inc. OP 

Raytheon Semiconductors RC-RM 

RCA Solid State Division CA-CD 

Sprague ULN-ULS-ULX 

Siliconix L 

Signetics Corp. NE-SE -SU 

SGS-Ates LS 

Texas Instruments Inc. SN-TL-TLC-(µA) 
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D.2.  Pin-out and general data sheets of Operational Amplifiers  
 

The pinout identification is found in each datasheet, but some general features are the following. 

Pin numbers run always in clockwise direction (top-view), and pin 1 is the closest to the marker. 

The marker (see figure) is a dot, or notch in plastic model and a tab in metal can. 

 

 Metal Can Dual in line plastic (DIP) 

The characteristics of OA are given by manufacturers within Data Sheets, freely downloadable in 

internet, that often include useful suggestions for circuit design118. 

In the following tables we list some data for the most common IC: the commercially abvailable 

devices are thousands and new models are continuously produced. 

———— 
118 Texas: http://www.ti.com/ww/en/home/three-col/ 

Analog Devices: http://www.analog.com/en/amplifiers-linear/products/index.html,  
Fairchild: http://www.fairchildsemi.com/products/ 
BurrBrown: http://www.burrbrown.info/ and  http://www.datasheetcatalog.net/it/burrbrown/1/ 
Maxim:.http://www.maxim-ic.com/design/techdocs/app-notes/ 



166   

 

D.2.1. OA with pinout  "741"  
  

Name input 
stage 

Vcc (V) 
Min-Max 

Vos 
(mV) 

Ib  
(nA) 

Ios 
(nA) 

ω1   
(MHz) 

CMMR 
 (dB) 

A  
 (103 ) 

Is  
(mA) 

Io  
(mA) 

µA741 bipolar 10–36 2 80 20 1.2 90 200 2.8 20 
AD741 bipolar 10–44 0.5 30 2 1 110 200 2.8 15 
LS148 bipolar 4–22 1 80 20 1 90 150 1.9 25 
OP01 bipolar 10–44 1 20 1 2.5 100 100 3 6 
OP02 bipolar 10–44 0.3 18 0.5 1.3 100 250 2 6 
RC4131 bipolar 7–36 1.5 70 3 4 100 160 2 10 
NE530 bipolar 10–36 2 65 15 3 90 200 3 10 
NE535 bipolar 10–36 2 65 15 1 90 200 2.8 10 
MC1456 bipolar 10–36 5 15 5 1 110 100 3 5 
MC1436 bipolar 10–80 5 15 5 1 110 500 5 10 
LM143/343 bipolar 10–68 2 8 1 1 90 100 2 20 
HA2645 bipolar 20–80 2 15 12 4 100 200 4.5 10 
MC1741 bipolar 10–44 6 200 30 1 90 200 3.5 10 
TL081 JFET 5–15 5 .03 .005 3 80 200 2.8 10 
TL071 JFET 5–15 3 .03 .005 3 76 200 2.5 10 
TL061 JFET 5–15 3 .03 .005 1 76 10 0.25 5 
TL051 JFET 5–15 0.7 20pA 4 pA 3.6 85 60 2.3 80 
TL031 JFET 5–15 0.5 2 pA 1 pA 1 87 7 0.2 40 
LF351 FET 10–36 5 .05 .025 4 100 100 3.4 10 
AD515 FET 10–36 0.4 .3 pA .3 pA 0.4 94 40 1.5 10 
3528BM FET 10–40 0.1 .2 pA .04pA 0.7 86 100 1.5 10 
CA3140 Mosfet 4–44 2 10pA .5 pA 3.7 90 100 6 10 
CA3160 Mosfet 5–16 2 5 pA .5 pA 4 90 320 15 12 
OPA602 DiFET 5-18 .25 1 pA .5pA 6.5 100 100 20 4 

Pins 1-5 are for offset null 

3
–
+

+Vcc

–Vcc

1

7
6

54

2

–Vcc
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D.2.2. OA with pinout  "356" 
 

Name input 
stage 

Vcc (V) 
Min-Max 

Vos 
(mV) 

Ib  
(nA) 

Ios 
(nA) 

ω1   
(MHz) 

CMMR 
 (dB) 

A  
 (103 ) 

Is  
(mA) 

Io  
(mA) 

LF355 FET 10–36 3 0.03 0.003 2.5 100 100 4 20 
LF356 FET 10–36 3 0.07 0.007 4.5 100 100 10 20 
LF357 FET 10–36 3 0.07 0.007 20 100 100 10 20 
OP15 FET 10–44 0.2 0.015 0.003 6 100 240 4 15 
OP16 FET 10–44 0.2 0.015 0.003 8 100 240 7 20 
AD825 FET 5-15 1 0.02 0.02 41 80 6.5 6 50 
LM110 /210/310 bipolar 5–18 1.5 1.5 10 20 100 1 4 5 
LM112 /212/312 bipolar 5–18 1 1 1 0.3 100 20 0.3 5 
LM216 /316 bipolar 5–20 0.5 5 0.05 0.1 80 30 0.6 5 
AD504 bipolar 10–36 0.5 80 2 0.3 110 1000 3 15 
AD510 bipolar 10–36 0.02 10 - 0.3 110 1000 3 10 
AD517 bipolar 10–36 0.02 5 3 0.25 100 1000 4 10 
µA725 bipolar 5–20 0.5 42 2 0.08 100 3000 3 5 
OP05 bipolar 6–44 0.2 1.2 1.2 0.6 123 500 4 10 
OP07 bipolar 6–44 0.01 0.7 0.3 0.6 126 500 4 10 
HA2500 /02/05 bipolar 10–20 4 100 20 0.5 90 60 4 10 
HA2510 /12/15 bipolar 10–20 4 100 20 0.5 90 15 4 10 
HA2520 /22/25 bipolar 10–20 4 100 20 2 90 15 4 10 
OPA177 bipolar 10-15 0.01 1 1 0.6 60 6000 1 20 

  

 
offset null pins: either 1-5 or 1-8 
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D.2.3.  Dual operational amplifiers  
 

Name input 
stage 

Vcc (V) 
Min-Max 

Vos 
(mV) 

Ib  
(nA) 

Ios 
(nA) 

ω1   
(MHz) 

CMMR 
 (dB) 

A  
 (103 ) 

Is  
(mA) 

Io  
(mA) 

MC1458 bipolar 5–18 2 80 20 1.2 90 200 2.8 20 
RC4558 bipolar 5–15 1 40 5 3 100 300 7 20 
LM158/258/358 bipolar 3–18 2 50 10 1 90 200 3 20 
µA798 (#) bipolar 3–18 2 50 10 1 90 200 3 20 
OP04 (*) bipolar 5–22 0.3 18 0.5 1.3 100 250 2 6 
OP14 bipolar 5–22 0.3 18 0.5 1.3 100 250 2 6 
OPA2604 FET 4-24 1 0.1 0.004 20 100 100 35 12 
µA747 (**) bipolar 5–18 2 80 20 1.2 90 200 2.8 20 
TL082 JFET 5–15 5 .03 .005 3 80 200 2.8 10 
TL072 JFET 5–15 3 .03 .005 3 76 200 2.5 10 
TL062 JFET 5–15 3 .03 .005 1 76 10 0.25 5 
TL052 JFET 5–15 0.7 20pA 4 pA 3.6 85 60 2.3 80 
TL032 JFET 5–15 0.5 2 pA 1 pA 1 87 7 0.2 40 
LF353 JFET 5–18 5 .05 .025 4 100 100 3.4 10 
µA772 JFET 5–18 2 .05  3 80 100 3 10 

 

 
 

(#) accepts single supply 
(*)(**) 14-pin available, with offset null 
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D.2.4.  Quad operational amplifiers  
 
 

Name input 
stage 

Vcc (V) 
Min-Max 

Vos 
(mV) 

Ib  
(nA) 

Ios 
(nA) 

ω1   
(MHz) 

CMMR 
 (dB) 

A  
 (103 ) 

Is  
(mA) 

Io  
(mA) 

MC4741 bipolar 5–18 2 80 20 1.2 90 200 2.8 20 
RC4156 bipolar 3–20 5 60 30 3.5 80 100 7 20 
LM148/248/348 bipolar 5–18 2 80 20 1.2 90 200 2.8 20 
LM124/224/324 # bipolar 3–30 2 45 5 1 100 50 0.8 30 
OP11 bipolar 5–22 0.5 300 25 2 120 600 3 15 
TL084 JFET 5–15 5 .03 .005 3 80 200 2.8 10 
TL074 JFET 5–15 3 .03 .005 3 76 200 2.5 10 
TL064 JFET 5–15 3 .03 .005 1 76 10 0.25 5 
TL054 JFET 5–15 0.7 0.02 0.004 3.6 85 60 2.3 80 
TL034 JFET 5–15 0.5 0.002 0.001 1 87 7 0.2 40 
LF347 JFET 5–18 3 0.05 0.025 3 100  7  
µA774 JFET 5–18 10 0.2 0.1 3 70 25 3 25 

 

 
 (#) accepts single supply 

–
+

+Vcc

–Vcc

1

7
6

4

3

2

8

5

–
+

–
+

–
+

13

10

9

12

11

14
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D.2.5  Instrumentation amplifiers 

 

  
INA114,INA115, INA118, OPA2604,OPA177 :  

the gain is adjusted by the external resistor RG: G=1+50kΩ/ RG 
 

 

 

D.3.  Comparators 

 
Name open 

collector 
Vcc    
(V) 

Vos 
(mV) 

Ib  
  (µA) 

Ios  
 (µA) 

τs  
(µs) 

Num 
Comp. 

Single 
Supply 

µA111/311 
LM111/211 

yes ±15 1 0.1 0.04 0.2 1 yes 

LF111/211/311 yes
 

±15 4 50 nA .02 nA 0.2 1 yes
 

µA710-LM710 no –7+14 0.6 20 3 0.04 1 no 
LM106/206/306 yes

 
±12 2 20 3 0.04 1 no 

LM119/219/319 yes
 

±15 4 0.5 0.1 0.08 2 yes
 

LM139/239/339 
µA139/239/339 

yes
 

±18 2 0.2 0.05 1.3 4 yes
 

LM193/293/393 yes
 

±18 1 0.1 0.02 1.3 2 yes
 

µA711-LM711 no –7+14 3 50 10 0.04 2 no 
LP165/365 yes

 
±18 3 0.1 0.05 4 4 yes
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D.4.   Basic list of logic gates (TTL and CMOS)119 
 

          

———— 
119 Pinouts of 74xx series may be found in http://www.romux.com/pinouts/74-series/pin-identification 

Type number number TTL CMOS 
  of inputs of gates drawing name drawing name 

Inverter 1 6 a 7404 a 4069 
AND 2 4 e 7408 c 4081 

AND 3 3 g 7411 h 4073 

AND 4 2 e 7421 f 4082 
NAND 2 4 b 7400 c 4011 

NAND 3 3 g 7410 h 4023 

NAND 4 2 e 7420 e 4012 

NAND 8 1  7430  4068 
OR 2 4 b 7432 c 4071 

OR 3 3  – h 4075 

OR 4 2  – f 4072 
NOR 2 4 d 7402 c 4001 

NOR 3 3 g 7427 h 4025 

NOR 4 2  7425 e 4002 

XOR 2 4 b 7486 c 4070 
XNOR 2 4  74266 c 4077 

Schmitt NAND 2 4  – c 4093 

Schmitt Inverter 1 6 a 7414 a 4584 
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